The deflection of a simply supported beam that carries a central point load can be analyzed using structural mechanics principles, particularly by applying Castigliano's theorem. This theorem relates the displacement at the load application point to the partial derivatives of the strain energy in the structure. The simply supported beam with a point load at its center has symmetric reaction forces at the supports, each bearing half of the load. The bending moment at any point along the beam is derived from these reactions, calculated over the distance from the nearest support.

Castigliano's theorem indicates that the deflection at the point where the load is applied is determined by differentiating the strain energy of the beam with respect to the load. Strain energy is calculated based on the bending moment along the beam, integrated over its length. For this beam, the strain energy due to bending is computed from the square of the bending moment expression, integrated along half the beam's length.

Equation 1

Since the beam is symmetric, this value is doubled to account for the entire beam, and the deflection at the center of the beam is computed. It is dependent on the load magnitude, the cube of the beam's length, and inversely proportional to the product of the moment of inertia and the elastic modulus of the beam's cross-section.

Equation 2

Tags
Castigliano s TheoremDeflectionSimply Supported BeamCentral Point LoadStructural MechanicsStrain EnergyBending MomentSymmetric Reaction ForcesLoad Application PointMoment Of InertiaElastic ModulusCross sectionProblem Solving

Du chapitre 27:

article

Now Playing

27.8 : Castigliano's Theorem: Problem Solving

Energy Methods

373 Vues

article

27.1 : Énergie de déformation

Energy Methods

238 Vues

article

27.2 : Densité d’énergie de déformation

Energy Methods

245 Vues

article

27.3 : Énergie de déformation élastique pour des contraintes normales

Energy Methods

95 Vues

article

27.4 : Énergie de déformation élastique pour les contraintes de cisaillement

Energy Methods

90 Vues

article

27.5 : Charge d’impact

Energy Methods

133 Vues

article

27.6 : Charge d’impact sur une poutre en porte-à-faux

Energy Methods

273 Vues

article

27.7 : Théorème de Castigliano

Energy Methods

267 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.