Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
The following protocol describes the procedure to assemble sandwich-like cultures to be used as an intermediate stage between bi-dimensional (2D) and three-dimensional (3D) cellular environments. The engineered systems can have applications in microscopy, biomechanics, biochemistry and cell biology assays.
La culture cellulaire a été traditionnellement effectuée sur bidimensionnel (2D) substrats où les cellules adhèrent utilisant des récepteurs à la surface ventrale biomatériau. Toutefois in vivo, la plupart des cellules sont complètement entourés par la matrice extracellulaire (ECM), ce qui entraîne une tridimensionnel (3D) distribution des récepteurs. Ceci peut déclencher des différences de l'extérieur, dans les voies de signalisation et donc dans le comportement des cellules.
Cet article montre que la stimulation des récepteurs dorsales de cellules déjà adhéré à un substrat 2D en superposant un film d'un nouveau matériau (une culture de sandwich) déclenche des changements importants en ce qui concerne les cultures 2D standard. En outre, l'excitation simultanée des récepteurs ventrales et dorsales décale le comportement des cellules plus proche de celle trouvée dans les environnements 3D. En outre, en raison de la nature du système, une culture en sandwich est un outil polyvalent qui permet l'étude de différents paramètres de cellule / matériau interactions, par exemple, la topographie, la raideur et différents revêtements de protéines à la fois les côtés ventrales et dorsales. Enfin, depuis les cultures sandwich-like sont basés sur des substrats 2D, plusieurs procédures d'analyse déjà développés pour des cultures 2D standard peut être utilisé normalement, surmonter des procédures plus complexes nécessaires pour les systèmes 3D.
Traditionnellement, la culture cellulaire a été réalisée sur bidimensionnels (2D) des substrats, si la plupart des micro-environnements cellulaires in vivo ont un (3D) nature tridimensionnelle. Cet environnement 2D contre nature provoque des changements dans le comportement des cellules comme un moyen d'auto-adaptation à un monde plat, ce qui influe directement sur le destin des cellules 1,2. Par conséquent, les résultats obtenus sur les cultures de cellules 2D ne sont pas toujours reproductible in vivo. Cela a encouragé le développement de nouveaux systèmes de culture pertinentes qui cherchent à offrir des conditions plus physiologiques semblables pour obtenir de nouvelles informations sur un mécanisme biologique de dimension 3,4-dépendante.
L'une des principales différences entre la culture 2D et le 3D dans un environnement in vivo est la distribution des récepteurs de cellules ancrées sur la matrice extracellulaire (ECM): tandis que sur 2D substrats cellules adhèrent ventralement, la majorité des cellules in vivo est complètement entourée par l'ECM et donc CEll adhérence se produit à travers une distribution 3D des récepteurs. Cela déclenche différentes voies de signalisation de l'adhérence cellulaire modulant ainsi les processus importants tels que la croissance cellulaire, la différenciation cellulaire et l'expression des gènes. Durant les dernières décennies, de nombreux systèmes de culture 3D différents ont été établis 5-8, mais leur variabilité et la complexité entravent leur normalisation dans les procédures de culture cellulaire commune. En outre les systèmes 3D ne sont généralement pas faciles à manipuler et procédures expérimentales actuelles sur des substrats 2D ne peuvent être facilement établis pour les cultures 3D. En outre, la littérature compare rarement cultures 3D avec la condition de 2D équivalent ou des autres systèmes 3D, ce qui entrave la bonne compréhension du comportement des cellules dans ces modèles.
Une fois que les cellules ayant adhéré à un substrat en 2D, l'excitation des récepteurs dorsales - en superposant un film d'un nouveau matériau (culture en sandwich) - peuvent déclencher des réponses des cellules aussi bien des environnements 3D. Le reafils derrière cela est l'activation simultanée de deux récepteurs dorsale et ventrale à adhérer et la propagation dans l'environnement sandwich (Figure 1) 9,10. En conséquence, les cellules subissent des changements importants en ce qui concerne les cultures 2D 11,12. Ainsi, le devenir des cellules est déterminée lors de l'assemblage du fait de la culture en sandwich, étant donné que la stimulation dorsale déclenche les changements dans les voies cellulaires clés. Par conséquent, le destin des cellules est fortement déterminée par le moment où la culture en sandwich 11 est assemblé.
En raison de la nature du système, une culture en sandwich est un outil simple et polyvalent qui permet l'étude de différents paramètres dans les interactions cellule / matérielles telles que la chimie, de la topographie, de rigidité et de protéines revêtements à la fois les côtés ventrales et dorsales. Cela offre un degré de polyvalence plus élevé par rapport à d'autres systèmes 3D (figure 2) en raison de la dorsale indépendante et la combinaison ventrale d'un large variété des conditions de surface. En outre, différentes lignées cellulaires et à des moments différents assembler la culture en sandwich peuvent être étudiés, ce qui augmente le large spectre de possibilités.
Un protocole standard de la culture en sandwich est détaillée ci-dessous en utilisant soit de poly-L-lactique (PLLA) des fibres ou des films en tant que substrats électrofilées dorsales, lamelle de verre comme substrat ventral et de la fibronectine comme protéine de revêtement. cultures de sandwich ont été assemblés juste après l'ensemencement des cellules ou après 3 h de culture 2D. Toutefois, notez que d'autres systèmes de matériaux et des protéines pourraient être utilisés; De même, la culture en sandwich peut être assemblé à différents points dans le temps.
1. La production de substrats dorsales
2. Sandwich Culture
3. Analyse
Remarque: Les cultures de sandwich sont basés sur des substrats en 2D, et ainsi peuvent être analysées par des procédés communément déjà développés pour les cultures 2D standard. Par exemple, étant donné que le PLLA est transparent et cells sont contraints de se déplacer dans le plan xy, la microscopie est effectuée sur des substrats en 2D. La migration cellulaire peut donc être analysé comme pour les cultures 2D, sans qu'il soit nécessaire de suivre dans les cellules de l'axe z comme des cultures 3D, ce qui simplifie l'analyse de l'expérience et de l'image. Pour étudier le dosage de cicatrisation par un essai de zéro suivre ce protocole:
Remarque: Les protéines et extraction d'acide nucléique est effectuée de manière similaire comme sur des substrats 2D. Il n'y a qu'une étape supplémentaire qui consiste à démonter la culture en sandwich d'ajouter le tampon de lyse directement sur les cellules afin d'augmenter le rendement d'extraction. Par exemple, pour l'extraction de l'ARNm:
Remarque: immunodétection des protéines peut également être effectuée sur des substrats en tant que 2D. Depuis cultures sandwich-like pourraient entraver la diffusion correcte des anticorps et des tampons, des temps d'incubation devraient être augmentés. En outre, le sandwich peut être démonté avant de démarrer le protocole de coloration mais dans ce dernier cas, certaines cellules restera attaché au substrat dorsal et d'autres sur le substrat ventral.
La stimulation des récepteurs dorsales dans la culture en sandwich déclenche des changements dans la morphologie cellulaire, l'adhésion cellulaire et des voies de signalisation intracellulaires (par exemple, l'adhérence focale kinase, FAK) 12/10. A titre d'exemple, des fibroblastes en culture dans le système sandwich surexprimés la sous-unité α de l'intégrine 5 par rapport au 2D, comme on l'observe pour d'autres cultures 3D 15,16.
De nos jours, la culture 3D est un sujet important pour l'industrie pharmaceutique et biotechnologique ainsi que la recherche en biologie cellulaire, y compris le cancer et les cellules souches. En conséquence, plusieurs systèmes de culture en 3D ont été développés. Malheureusement, les différences entre les systèmes 3D se traduisent habituellement par le comportement des cellules différentes, ce qui entrave la compréhension du destin cellulaire. En outre, les procédures expérimentales sont généralemen...
The authors have nothing to disclose.
The support from ERC through HealInSynergy (306990) and the FPU program AP2009-3626 are acknowledged.
Name | Company | Catalog Number | Comments |
Ploy(lactic acid) | NatureWorks | 4042D | Reagent |
Cover glasses (12 mmØ) | Marienfeld | 631-0666 | Equipment |
Chloroform | Scharlab | CL0200 | Reagent |
1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) | Sigma | 105228 | Reagent |
Syringe (1 ml) | Henke Sass Wolf | 4010-200V0 | Equipment |
Syringe pump | New Era Pump Systems | NE1000 | Equipment |
High Voltage DC Power Supply | Glassman High Voltage | Series FC | Equipment |
Incubator | Hucoa-Herlös | 3111 | Equipment |
Laminar flow hood | Telstar | AV30/70 | Equipment |
Human Fibronectin | Sigma | F2006 | Reagent |
RNeasy Micro Kit | Qiagen | 74004 | Reagent |
Inverted microscope | Leica Microsystems | DMI 6000 | Equipment |
Triton X-100 | Sigma-Aldrich | T8787 | Reagent |
Albumin | Sigma-Aldrich | A7409 | Reagent |
Tween 20 | Sigma-Aldrich | P2287 | Reagent |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon