Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Analysis of the mitochondrial structure-function relationship is required for a thorough understanding of the regulatory mechanisms of mitochondrial functionality. Specific methods for studying mitochondrial structure and function in live and fixed Drosophila ovaries are described and demonstrated in this paper.
Analysis of the mitochondrial structure-function relationship is required for a thorough understanding of the regulatory mechanisms of mitochondrial functionality. Fluorescence microscopy is an indispensable tool for the direct assessment of mitochondrial structure and function in live cells and for studying the mitochondrial structure-function relationship, which is primarily modulated by the molecules governing fission and fusion events between mitochondria. This paper describes and demonstrates specific methods for studying mitochondrial structure and function in live as well as in fixed tissue in the model organism Drosophila melanogaster. The tissue of choice here is the Drosophila ovary, which can be isolated and made amenable for ex vivo live confocal microscopy. Furthermore, the paper describes how to genetically manipulate the mitochondrial fission protein, Drp1, in Drosophila ovaries to study the involvement of Drp1-driven mitochondrial fission in modulating the mitochondrial structure-function relationship. The broad use of such methods is demonstrated in already-published as well as in novel data. The described methods can be further extended towards understanding the direct impact of nutrients and/or growth factors on the mitochondrial properties ex vivo. Given that mitochondrial dysregulation underlies the etiology of various diseases, the described innovative methods developed in a genetically tractable model organism, Drosophila, are anticipated to contribute significantly to the understanding of the mechanistic details of the mitochondrial structure-function relationship and to the development of mitochondria-directed therapeutic strategies.
Les mitochondries sont classiquement décrites comme la centrale cellulaire, car ils sont les principaux sièges de la production d'énergie dans les cellules différenciées. En outre, les mitochondries jouent un rôle essentiel dans le métabolisme, la génération de chaleur, une modification lipidique, le calcium et l' homéostasie redox, l'orchestration des processus de signalisation cellulaire, etc. 1. Les mitochondries jouent également un rôle actif dans l'induction de la mort cellulaire 2, ainsi que dans la régulation du cycle cellulaire 3. Cette multi-fonctionnalité soulève les questions fondamentales suivantes: a) comment les mitochondries remplissent toutes ces fonctions simultanément et b) sont là piscines mitochondriaux spécifiques ou sous-zones qui sont spécialisés pour des fonctions distinctes? Dans ce contexte, il est important de noter que les mitochondries multifonctionnels sont dynamiques dans leur forme, la taille et la structure au sein des cellules individuelles et que la forme à l'état stable des mitochondries peuvent varier entre les types de cellules. Des décennies de recherche de divers laboratoirepatronages suggèrent que la modification de la forme mitochondriale, la taille et la structure, la dynamique collectivement appelées mitochondries, est crucial pour le maintien de diverses fonctions mitochondriales 4,5,6. Ces résultats soulèvent la possibilité que les mitochondries peuvent accomplir leur multi-fonctionnalité en raison de leur dynamisme structurel.
Des efforts considérables sont en cours pour comprendre la relation structure-fonction mitochondriale. Le dynamisme de la structure mitochondriale est principalement maintenu par leur aptitude à subir une fission et de fusion des événements les uns avec les autres. Fission de grandes mitochondries les convertit en éléments mitochondriales plus petits, tandis que la fusion entre deux mitochondries plus petites les fusionne en un élément mitochondrial plus grande 7. En outre, la fusion transitoire de deux mitochondries peut se produire pour permettre le mélange de leur contenu. La fission et de fusion événements des membranes mitochondriales interne et externe sont soigneusement régies par les spécificationstib ensembles de protéines. Le mécanisme de base de fission se compose de protéine apparentée à la dynamine-1 (DRP1), qui est recruté dans le cytosol vers la mitochondrie par son interaction avec certains de bonne protéines mitochondriales bonne (par exemple Fis1 ou Mff1), tandis que la fonction DRP1 peut également être régulée par d' autres protéines sur la surface mitochondriale 4. Bien que DRP1 agit sur la membrane externe, ses capacités de fission impact sur la membrane interne aussi bien. L'orchestration de la fission des membranes mitochondriales externes et internes ne sont pas bien compris. D'un autre côté, la fusion de la membrane interne est régie au coeur par les activités de Opa1, tandis que mitofusins régissent la fusion de la membrane externe 5. Le solde des produits de fission et fusion contrecarrant événements de mitochondries dicter la forme mitochondriale à l'état stable dans une cellule. Par exemple, la répression de la fission mitochondriale se traduirait par une fusion complète et sans opposition, alors que la sur-activité des mitochondriesl fission se traduirait par une fragmentation des mitochondries 3.
L'étude de la relation structure-fonction mitochondriale implique principalement deux approches complémentaires: a) l'analyse des phénotypes cellulaires et organismales après la manipulation génétique des protéines fission / fusion mitochondriales et b) des évaluations directes de la structure et la fonction mitochondriale. Il est à noter que les analyses génétiques ne peuvent pas toujours révéler la fonctionnalité directe de la molécule à portée de main (dans ce cas, les protéines fission / fusion mitochondriales), que les phénotypes peuvent survenir en raison d'effets secondaires. Par conséquent, il est de la plus haute importance pour développer et utiliser des outils pour étudier la structure et la fonction mitochondriale directement. Toute évaluation de la structure mitochondriale implique divers outils de microscopie. L'utilisation de la microscopie à fluorescence de cellules vivantes a considérablement avancé les études de la dynamique mitochondriale, car le dynamisme mitochondrial peut être contrôlé à la fois qualitativement et quantitativement en utilisant les outils et techniques 8 de microscopie par fluorescence appropriés. Outils de microscopie par fluorescence ont été développées pour étudier la structure et la fonction mitochondriale dans les tissus vivants et fixes Drosophila melanogaster, élucidant l'importance du dynamisme mitochondriale in vivo 9. Ceux - ci et des procédés associés sont décrits ici, dans le but d'étudier la structure et la fonction mitochondriale dans l'ovaire chez la drosophile.
L'ovaire chez la drosophile est constituée de lignées germinales et somatiques, qui résultent de leurs cellules souches adultes respectives qui se trouvent dans le germarium 10,11. Seize cellules germinales syncytial (GCS) s'encapsulées par les cellules folliculaires somatiques (FC) pour former des chambres d'œufs individuels qui émergent de l'germarium (Figure 1). L'un des 16 glucocorticoïdes get engagé à devenir un ovocyte, et les 15 restants GCS développent dans les cellules nourricières qui soutiennent la croissance de la chambre de l'ovocyte, Ce qui facilite la maturation de l'œuf avant qu'elle ne soit déposée. La majorité des FC subissent 9 séries de divisions mitotiques avant qu'ils ne quittent le cycle cellulaire mitotique pour différencier terminale dans une couche de cellules épithéliales motif constitué par des cellules antérieure du follicule (AFC), les cellules du follicule postérieur (PFC) et principales cellules du corps (CBM) . Les chambres d'œufs consécutives sont reliées par des cellules de tige, qui sont des cellules qui sont également dérivées des FC au début du développement différenciés. Forme mitochondriale régulée par mitochondrial DRP1 protéine de fission est activement impliquée dans le processus de différenciation au cours du développement normal de la FC couche ovarienne Drosophila 9,12. Les méthodes utilisées dans ces études pour déterminer l'implication de la drosophile DRP1 développement de la couche de cellules folliculaires sont décrites ici.
Access restricted. Please log in or start a trial to view this content.
1. Préparation de la drosophile (les outils nécessaires sont représentés sur la figure 2A)
2. Dissection de Drosophila Ovaires (les outils nécessaires sont représentés sur la figure 2A)
3. Préparation de Microscopie en direct des tissus
REMARQUE: Les outils nécessaires sont représentés sur la figure 2A.
4. Fluorescence Perte Dans Photoblanchiment (FLIP) Dosage pour évaluer mitochondrial Matrice de continuité
REMARQUE: la continuité de la matrice mitochondriale dans une structure mitochondriale fusionnée est créée après la fusion complète des membranes mitochondriales interne et externe suivant une progression à travers les étapes intermédiaires. Fission des mitochondries peut suivre les mêmes étapes , mais dans le sens inverse (figure 3A). FLIP est une méthode semi-quantitative time-lapse en fonction microscopie qui peut être utilisé pour évaluer la continuité de la matrice mitochondriale dans laétat final fusionné ex vivo mitochondries (étapes 3 et 4 sur la figure 3A) dans les ovaires de Drosophila vivantes 9. Le dosage de FLIP est réalisée comme une petite région d'intérêt (ROI) des mitochondries exprimant une molécule fluorescente dans la matrice mitochondriale qui est décolorées à intervalles réguliers (FLIP ROI sur la figure 3A). En conséquence, toute région mitochondrial environnante qui est continue avec le ROI FLIP (ROI expérimentale sur la figure 3A) va perdre le signal en raison de l'échange de molécules dans la matrice mitochondriale continue. Les expériences ont démontré ici FLIP sont réalisées sur la drosophile transgénique exprimant mitoYFP, qui contient la séquence d'adressage mitochondrial de la sous - unité VIII de la cytochrome oxydase humaine marqués avec YFP pour cibler à la matrice mitochondriale sous une forme librement diffusible. Une expérience similaire peut également être réalisée avec le transgène mito-UPAEP mito-GFP, comme indiqué précédemment 9. Un protocole FLIP similaire peut être utilisé avec une sonde ciblée vers l'espace inter-membrane mitochondriale pour être en mesure de détecter la continuité résultant de la fusion de l'extérieur , mais pas la membrane mitochondriale interne (étape 2 sur la figure 3A).
5. Coloration en direct avec Fluorescent mitochondrial Colorants
NOTE: L'état d' équilibre structure et potentiel mitochondrial peuvent être évalués en utilisant des colorants qui intègrent spécifiquement dans les mitochondries dans les cellules vivantes et de tissus. Ovaires vivants Drosophila peuvent être colorées ex vivo avec mitochondrial fluorescenttaches de visualiser les mitochondries, pour évaluer les espèces réactives de l'oxygène mitochondriales (mito-ROS), et d'évaluer le potentiel mitochondrial par unité de masse. Ceci peut être accompli par co-coloration avec l'ester mitochondriale potentiométrique colorant tétraméthylrhodamine d'éthyle (TMRE) et un colorant direct mitochondriale compatible représentant la masse mitochondriale (voir le tableau des matériaux pour les colorants spécifiques).
6. Génération de DRP1 Null Mosaïques
NOTE: La stratégie clonal utilisé ici introduit la protéine fluorescente verte (GFP) séronégatifs clones nuls DRP1 en arrière - plan d'un, phénotypiquement de type sauvage fond GFP-positive qui est hétérozygote génotypique pour la mutation nulle DRP1 9. Choc induite par la cible de reconnaissance de flippase-flippase (FLP-FRT) médiée mitotique recombinaison site-spécifique de chaleur crée des clones homozygotes de l'allèle drpKG03815 fonctionnellement nul. Le génotype de la drosophile portant le mutant DRP1 est drpKG03815 FRT40A / CYO, alors que le génotype portant le FLP choc thermique induite (hsFLP) et le marqueur clonal UbiGFP est hsflp; nls-GFP ubiquitine (UbiGFP) FRT 40A / CYO. Le génotype de la SEprogéniture tionné de la croix entre les génotypes ci-dessus est hsFLP / +; drpKG03815 FRT40A / UbiGFPFRT40A.
7. Co-immunocoloration pour la cycline E et mitochondries
NOTE: Pour détecter la drosophile cycline E (dCyclinE), nous avons utilisé un anticorps obtenu dans le commerce soulevé spécifiquement contre dCyclinE 9 (voir tableau des matériaux). En tant que marqueur mitochondrial, nous avons utilisé un anticorps dirigé contre l' ATP-B (une sous - unité du complexe ATP synthase mitochondriale) 9.
Access restricted. Please log in or start a trial to view this content.
Les procédés décrits peuvent être utilisés pour étudier la structure et la fonction mitochondriale dans les ovaires vivants et fixes de Drosophila (figure 2B). Pourvu quelques exemples de résultats escomptés obtenus avec les méthodes décrites.
Dissection de l'ovaire chez la drosophile: Lorsque disséqué en outre, les abdomens sectionnés (figure 3...
Access restricted. Please log in or start a trial to view this content.
Étapes critiques dans le Protocole
Photobleaching: Prévention photoblanchiment excessive des échantillons fluorescents est absolument nécessaire à l'exécution efficace de la microscopie confocale. Par conséquent, le temps utilisé pour localiser des échantillons à travers l'oculaire ou pour définir les paramètres d'acquisition d'image à travers le mode de balayage en direct devrait être réduit au minimum afin de minimiser photoblanchiment.
<...Access restricted. Please log in or start a trial to view this content.
The authors have no competing financial interests.
We acknowledge Leena Patel and Diamond Woodard for helping in the Drosophila medium preparation and Dr. Igor Chesnokov for providing access to the camera-attached stereomicroscope.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Grace's Media (Insect Dissecting Medium) | Fisher Scientific | 30611031-2 | |
41 Paraformaldehyde AQ | Electronic Microscopy Sciences | 50-259-99 | |
Mitotracker Green (overall mitochondrial stain) | Life Technologies | m7514 | Reconstitute and Aliquot |
Tetramethylrhodamine ethyl ester perchlorate | Sigma Aldrich | 87917-25MG | Reconstitute and Aliquot |
MitoSox (Mito-Ros stain) | Life Technologies | m36008 | Reconstitute and Aliquot |
PolyLysine | MP Biomedicals | ICN15017625 | |
Fly Vials | Fisher Scientific | AS-515 | |
Fly Conicals | Fisher Scientific | AS-355 | |
Fly Vial Flugs | Fisher Scientific | AS273 | |
Fly Conical Flugs | Fisher Scientific | AS 277 | |
Jazzmix Drosophila food (Drosophila food) | Fisher Scientific | AS153 | |
Bovine Serum Albumin | Sigma Aldrich | A9647-50G | |
Cyclin E Antibody (d-300) | Santa Cruz | sc- 33748 | |
ATPB antibody [3D5] - Mitochondrial Marker | AbCam | ab14730 | |
Cy3 AffiniPure Goat Anti-Mouse IgG (H+L) | Jackson ImmunoResearch | 115-165-146 | |
Cy5 AffiniPure Goat Anti-Rabbit IgG (H+L) | Jackson ImmunoResearch | 111-175-144 | |
Hoechst | Fisher Scientific | H3570 | |
VectaShield | Fisher Scientific | H100 | |
Azer Scientific EverMark Select Microscope Slides | Fisher Scientific | 22-026-252 | |
Microscope Cover Glass | Fisher Scientific | 12-542-B | |
Mat Tek Corp Glass Bottom Mircrowell Dish | Fisher Scientific | P35G-0-14-C | |
Active Dried Yeast | Fisher Scientific | ICN10140001 | |
Confocal Microscope | Carl Zeiss | LSM 700 | |
Dumont #5 Forceps | Fine Science Technologies | 11251-20 | |
Moria Nickel Plated Pin Holder | Fine Science Technologies | 26016-12 | |
Minutien Pins | Fine Science Technologies | 26002-15 | |
MYFP ( w[*]; P{w[+mC]=sqh-EYFP-Mito}3 ) | Bloomington Stock Center | 7194 | |
Fly Pad | Fly stuff | 59-118 | |
Blowgun | Fly stuff | 54-104 | |
Blowgun needle | Flystuff | 54-119 | |
Dissecting Microscope | Carl Zeiss | Stemi 2000 | |
Analyses software | Carl Zeiss | Zen | |
Analyses software | Open source | Image J | |
Research Macro Zoom Microscope | Olympus | MVX10 | |
QICAM Fast 1394 Cooled Digital Camera, 12-bit, Mono | QImaging | QIC-F-M-12-C | |
QCapture Pro 5.1 | QImaging |
Access restricted. Please log in or start a trial to view this content.
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon