Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Nous présentons le modèle chorioallantoic de membrane de poulet comme modèle alternatif, transplantable, in vivo pour l'engraftment des lignes gynécologiques et urologiques de cellules cancéreuses et des tumeurs patient-dérivées.
Les modèles de souris sont les tests de référence pour les études sur le cancer in vivo. Cependant, le coût, le temps et les considérations éthiques ont donné lieu à des appels en faveur de modèles alternatifs de cancer in vivo. Le modèle de membrane chorioallantoïque de poulet (CAM) fournit une alternative peu coûteuse et rapide qui permet la visualisation directe du développement de tumeur et est approprié pour l'imagerie in vivo. En tant que tel, nous avons cherché à développer un protocole optimisé pour engrafting des tumeurs gynécologiques et urologiques dans ce modèle, que nous présentons ici. Environ 7 jours après la fécondation, la cellule d'air est déplacée vers le côté vascularisé de l'œuf, où une ouverture est créée dans la coquille. Les tumeurs des lignées cellulaires et des tissus primaires de la murine et de l'homme peuvent alors être greffées. Ceux-ci sont généralement enseisés dans un mélange de matrice extracellulaire et de milieu pour éviter la dispersion cellulaire et fournir un soutien nutritionnel jusqu'à ce que les cellules recrutent un approvisionnement vasculaire. Les tumeurs peuvent alors croître jusqu'à 14 jours supplémentaires avant l'éclosion des œufs. En implantant des cellules transmises de façon stable à la luciférase luciferase luciferase, l'imagerie par bioluminescence peut être utilisée pour la détection sensible de la croissance tumorale sur la membrane et la propagation des cellules cancéreuses dans l'ensemble de l'embryon. Ce modèle peut potentiellement être employé pour étudier la tumorigénicité, l'invasion, la métastes, et l'efficacité thérapeutique. Le modèle CAM de poulet nécessite beaucoup moins de temps et de ressources financières par rapport aux modèles murins traditionnels. Étant donné que les œufs sont immunodéprimés et tolérants au système immunitaire, les tissus de n'importe quel organisme peuvent potentiellement être implantés sans animaux transgéniques coûteux (p. ex. souris) requis pour l'implantation de tissus humains. Cependant, beaucoup des avantages de ce modèle pourraient potentiellement également être des limitations, y compris le temps court de génération de tumeur et le statut immunocompromis/immune tolérant. En outre, bien que tous les types de tumeur présentéicis ici engraft dans le modèle de membrane chorioallantoic de poulet, ils le font avec des degrés variables de croissance de tumeur.
Les souris ont servi d'organisme modèle classique pour l'étude des maladies humaines, y compris la malignité. En tant que mammifères, ils partagent de nombreuses similitudes avec les humains. Leur degré élevé de similitude génétique a permis la manipulation transgénique du génome de la souris pour fournir un aperçu énorme dans le contrôle génétique des maladies humaines1. Une vaste expérience dans la manipulation et l'expérimentation avec des souris a abouti à leur être le modèle de choix pour la recherche biomédicale. Cependant, en plus des préoccupations éthiques et scientifiques concernant les modèles murins, ils peuvent également être très coûteux et prendre beaucoup de temps2,3. Le développement des tumeurs peut prendre des semaines, voire des mois. Le logement à une institution typique seul peut fonctionner dans les centaines à des milliers de dollars tandis que les tumeurs se développent. Le cancer de l'ovaire est un exemple de cet inconvénient parce que sa croissance dans les modèles murins peut facilement prendre des mois. Les retards dans les progrès de la recherche peuvent avoir un impact sur le faible taux de survie à 5 ans des patients atteints d'un cancer de l'ovaire, qui n'est que de 47 % (c.-à-d. une augmentation de la survie de seulement 10 % sur 30 ans)4. De même, les cancers urologiques (cancers du rein, de la prostate et de la vessie) représentent 19 % de tous les cas de cancer aux États-Unis et 11 % des décès liés au cancer4. Ainsi, une nouvelle approche in vivo pour étudier les cancers gynécologiques et urologiques pourrait faire économiser beaucoup de temps, de travail et d'argent à un laboratoire, même si ce modèle n'est appliqué qu'aux premières expériences de dépistage. De plus, l'accélération des résultats de la recherche qui en résulterait pourrait avoir un impact important sur les 177 000 personnes diagnostiquées avec ces cancers chaque année.
Le modèle CAM de poulet offre de nombreux avantages qui répondent aux problèmes susmentionnés. Un modèle populaire pour étudier l'angiogenèse5,6, invasion de cellules tumorales7,8, et métastasie7,9,le modèle CAM embryon poussin a déjà été utilisé pour étudier de nombreuses formes de cancers, y compris le gliome10,11,12, la tête et le cou carcinome épidermoïde13,14, leucémie15,16, cancer du pancréas17, et cancer colorectal18. En outre, les modèles de CAM ont été produits pour le neuroblastome19, le lymphome de Burkitt20,le mélanome21,et le fibrosarcome félin22. Des études antérieures ont également présenté l'engraftment du cancer de la vessie23 et les lignées cellulaires du cancer de la prostate24, mais avec des détails limités de protocole. Non seulement les œufs sont beaucoup moins chers que les souris, mais ils produisent aussi des résultats très reproductibles25,26. Ils montrent le développement rapide de vascularisation, et l'engraftment de tumeur peut se produire en aussi rapidement que quelques jours et être visualisé longitudinalement par la fenêtre ouverte. Avec le délai de 21 jours entre la fécondation des œufs et l'éclosion, les expériences peuvent être terminées en quelques semaines. En outre, le faible coût, les besoins limités en matière de logement et la petite taille permettent facilement des expériences à grande échelle qui seraient prohibitives pour les études sur les souris.
Par conséquent, nous avons cherché à optimiser le modèle de CAM pour l'engraftment des cancers gynécologiques et urologiques. En raison de l'état immunocompromis de l'embryon de poulet au début27, la souris et les cellules humaines peuvent être facilement implantés. En tant que tel, nous avons réussi à greffer des cancers de l'ovaire, du rein, de la prostate et de la vessie. Pour chacun de ces types de tumeur, le CAM accepte facilement les lignées de cellules murines et/ou humaines établies de cellules de tumeur. Fait important, les tissus tumoraux humains primaires fraîchement récoltés peuvent également s'engrafter à partir de cellules digérées ou de morceaux de tissu solide avec des taux élevés de succès. Chacun de ces types de cancer et sources cellulaires nécessite une optimisation, que nous partageons ici.
Toutes les expériences présentées dans les présentes ont été examinées et approuvées par les comités d'éthique appropriés de l'Université de Californie à Los Angeles (UCLA). L'utilisation des tumeurs humaines humaines primaires et identifiées a été approuvée par le conseil institutionnel d'examen de l'UCLA (numéros de protocole 17-000037, 17-001169, et 11-001363). À l'UCLA, l'examen du Comité de recherche sur les animaux n'est pas nécessaire pour les expériences utilisant des embryons de poulet; l'approbation du protocole n'est requise que lorsque les œufs éclosent. Cependant, les meilleures pratiques, telles que les Lignes directrices de l'AVMA pour l'euthanasie des animaux, ont été utilisées pour manipuler les embryons de poulet de façon éthique et pour éviter autant que possible la douleur. Les chercheurs sont invités à vérifier les exigences de surveillance de leur établissement avant de commencer des études à l'aide de modèles DE CAM.
1. Préparation des œufs
2. Ouverture des œufs
REMARQUE : L'ouverture des œufs doit être faite lorsque le CAM est complètement développé. C'est typiquement le jour de développement 7 ou 8.
3. Préparation de la suspension des cellules cancéreuses pour la transplantation (option 1)
REMARQUE : Cela doit être terminé juste avant l'implantation, ce qui devrait idéalement avoir lieu entre les jours 7 et 10. Veuillez consulter les notes au début de l'étape 5 ou 6 pour plus d'informations concernant la date d'implantation. Cette approche a été employée pour toutes les lignes de cellules et les digests cultivés de tumeur de cancer de rein.
4. Préparation des morceaux tumoraux pour l'implantation (option 2)
REMARQUE : Cela doit être terminé juste avant l'implantation, ce qui devrait idéalement avoir lieu entre les jours 7 et 10. Veuillez consulter les notes au début de l'étape 5 ou 6 pour plus d'informations concernant la date d'implantation. Des cancers primaires d'ovaire et de réservoir souple ont été implantés comme morceaux de tumeur.
5. Implantation à l'aide d'un anneau antiadhésif (option 1)
REMARQUE : Les cellules peuvent être implantées à partir du jour du développement 7 si le CAM est entièrement développé. L'implantation peut se produire n'importe quand avant l'éclosion qui permet suffisamment de temps pour le développement de la tumeur et l'expérience souhaitée, mais notez que les cellules immunitaires de l'embryon commencent à être présents autour du jour 10 postfertilisation27. Le taux de croissance tumoral varie considérablement selon le type de cellule et doit être déterminé empiriquement pour le type de cellule d'intérêt. Le cancer de l'ovaire et les cellules cancéreuses de la prostate ont été implantés à l'aide de la méthode de l'anneau antiadhésif. Notez que lorsqu'un anneau antiadhésif n'est pas disponible, une pointe de pipet peut être coupée à une taille similaire et utilisée.
6. Implantation sans anneau antiadhésif (option 2)
REMARQUE : Les cellules peuvent être implantées à partir du jour du développement 7 si le CAM est entièrement développé. L'implantation peut se produire n'importe quand avant l'éclosion qui permet suffisamment de temps pour le développement de la tumeur et l'expérience souhaitée, mais notez que les cellules immunitaires de l'embryon commencent à être présents autour du jour 10 postfertilisation27. Cette méthode a été utilisée pour implanter les cellules rénales du carcinome et les cellules cancéreuses de la vessie.
7. Imagerie de bioluminescence des tumeurs marquées de luciferase de luciferase de luciferase de luciferase de luciferase
REMARQUE : Si les cellules implantées ont été transduced de façon stable avec le gène codant la luciferase de luciferase de luciferase de luciferase ou d'autres facteurs d'imagerie, alors les tumeurs résultantes peuvent être visualisées utilisant la formation image de bioluminescence. L'imagerie par fluorescence n'est pas recommandée sur les œufs intacts en raison de l'arrière-plan élevé de la coquille d'œuf. Il s'agit d'une analyse de point de terminaison, car l'ouverture de la coquille réduit considérablement la survie. Les tumeurs peuvent être imageà tout moment qui est approprié pour les besoins expérimentaux et la vitesse de la croissance tumorale. Cependant, en moyenne, les œufs éclosent 21 jours après la fécondation. Par conséquent, le jour de développement 18 est un point de terminaison approprié pour éviter l'éclosion non désirée.
8. Récolte de tumeurs
REMARQUE : Les tumeurs peuvent être récoltées à tout moment qui convient aux besoins expérimentaux et à la vitesse de croissance de la tumeur. Cependant, en moyenne, les œufs éclosent 21 jours après la fécondation. Par conséquent, le jour de développement 18 est un point de terminaison approprié pour éviter l'éclosion non désirée.
Jusqu'ici, nous avons trouvé cette méthode d'implantation pour être réussie pour des cancers ovariens, de rein, de prostate, et de réservoir souple. Chacun a été optimisé pour identifier des conditions spécifiques pour l'implantation, bien qu'il puisse y avoir flexibilité. Parmi les types de tumeurs testés, la croissance du cancer de l'ovaire était beaucoup moins prononcée et généralement non visible sans l'aide de la formation image de bioluminescence (
L'expansion et l'engraftment de tumeur utilisant le modèle de CAM permettent une croissance plus rapide et directement observable de tumeur que les modèles animaux in vivo existants. En outre, les coûts sont significativement plus faibles une fois l'achat initial de l'équipement est terminé, surtout par rapport au coût des souris immunocompromised. L'état initial et immunocompromis des embryons de poulet permet facilement l'engraftment du tissu humain et murine. Malgré ces atouts, le modèle CAM a des limites. Le...
Les auteurs n'ont rien à révéler.
Les auteurs tiennent à remercier le Dr Fuyuhiko Tamanoi et Binh Vu pour la formation initiale sur cette méthode. Les discussions avec la Dre Eva Koziolek ont contribué à l'optimisation de cette approche et ont été très appréciées. Ce travail n'aurait pas été possible sans le financement des sources suivantes : la Bourse postdoctorale du Programme de recherche sur les maladies liées au tabac (27FT-0023, à l'ACS), au Programme de recherche sur le cancer de l'ovaire du ministère de la Défense (DoD) (W81XWH-17-1-0160), au NCI/NIH (1R21CA216770), au Prix pilote à impact élevé du Programme de recherche sur les maladies liées au tabac (27IR-0016) et au soutien institutionnel de l'UCLA, y compris une subvention de semences JCCC (NCI/NIH P30CA016042) et une subvention 3R du Bureau du vice-chancelier pour la recherche à LW.
Name | Company | Catalog Number | Comments |
-010 Teflon (PTFE) White 55 Duro Shore D O-Rings | The O-Ring Store | TEF010 | Nonstick ring for cell seeding. 1/4"ID X 3/8"OD X 1/16"CS Polytetrafluoroethylene (PTFE). |
C4-2 | ATCC | CRL-3314 | Human prostate cancer cell line. |
CWR22Rv1 | CWR cells were the kind gift of Dr. David Agus (Keck Medicine of University of Southern California) | ||
Cytokeratin 8/18 Antibody (C-51) | Novus Biologicals | NBP2-44929-0.02mg | Used at a dilution of 1:100 for immunohistochemical analysis of human ovarian CAM tumors. |
D-Luciferin Firefly, potassium salt | Goldbio | LUCK-1G | |
Delicate Operating Scissors; Curved; Sharp-Sharp; 30mm Blade Length; 4-3/4 in. Overall Length | Roboz Surgical | RS6703 | This is provided as an example. Any similar curved scissors would work as well. |
Dremel 8050-N/18 Micro 8V Max Tool Kit | Dremel | 8050-N/18 | This kit contains all necessary tools. |
Fertilized chicken eggs (Rhode Island Red - Brown, Lab Grade) | AA Lab Eggs Inc. | N/A | A local egg supplier would need to be identified, as this supplier only delivers regionally. |
HT-1376 | ATCC | CRL-1472 | Human bladder cancer cell line. |
Hovabator Genesis 1588 Deluxe Egg Incubator Combo Kit | Incubator Warehouse | HB1588D-NONE-1102-1588-1357 | Other egg incubators may be used, but their reliability would need to be verified. After implantation, a cell incubator with the CO2 disabled may also be used. |
ID8 | Not commercially available, please see PMID: 10753190. | ||
Incu-Bright Cool Light Egg Candler | Incubator Warehouse | 1102 | Other candlers may be used; however, this is preferred among those that we have tested. This candler is included in the aforementioned incubator kit. |
Iris Forceps, 10cm, Curved, Serrated, 0.8mm tips | World Precision Instrument | 15915 | This is provided as an example. Any similar curved forceps would work as well. Multiple brands have been used for this method. |
Isoflurane | Clipper Distributing | 0010250 | |
IVIS Lumina II In Vivo Imaging System | Perkin Elmer | ||
Matrigel Membrane Matrix HC; LDEV-Free | Corning | 354248 | Extracellular matrix solution |
MyC-CaP | ATCC | CRL-3255 | Murine prostate cancer cell line. |
Portable Pipet-Aid XP Pipette Controller | Drummond Scientific | 4-000-101 | Any similar pipet controller would be appropriate. |
PrecisionGlide Hypodermic Needles | BD | 305196 | This is provided as an example. Any 18G needle would work similarly. |
RENCA | ATCC | CRL-2947 | |
Semken Forceps | Fine Science Tools | 11008-13 | This is provided as an example. Any similar forceps or another style that suits researcher preference would be appropriate. |
SKOV3 | ATCC | HTB-77 | Human ovarian cancer cell line. |
Specimen forceps | Electron Microscopy Sciences | 72914 | This is provided as an example. The forceps used for pulling away the shell for bioluminescence imaging are approximately 12.8 cm long with 3 mm-wide tips. |
Sterile Cotton Balls | Fisherbrand | 22-456-885 | This is provided as an example. Any sterile cotton balls would suffice. |
Stirring Rods with Rubber Policeman; 5mm diameter, 6 in. length | United Scientific Supplies | GRPL06 | This is provided as an example. Any similar glass stir rods would work as well. |
T24 | ATCC | HTB-4 | Human bladder cancer cell line. |
Tegaderm Transparent Dressing Original Frame Style 2 3/8" x 2 3/4" | Moore Medical | 21272 | |
Tissue Culture Dishes, 10 cm diameter | Corning | 353803 | This is provided as an example. Any similar, sterile 10-cm dish may be used. Tissue culture treatment is not necessary. |
Tygon Clear Laboratory Tubing - 1/4 x 3/8 x 1/16 wall (50 feet) | Tygon | AACUN017 | This is provided as an example. Any similarly sized tubing would work as well. |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon