The constricting cuff presented in this article is designed to induce atherosclerosis in the murine common carotid artery. Due to the conical shape of its inner lumen the implanted cuff generates well-defined regions of low, high and oscillatory shear stress triggering the development of atherosclerotic lesions of different inflammatory phenotypes.
The goal of this experiment is to determine and control the size, shape and stability of self-assembled discotic amphiphiles in water. For aqueous based supramolecular polymers such level of control is very difficult. We apply a strategy using both repulsive and attractive interactions. The experimental techniques applied to characterize this system are broadly applicable.
Engineered muscle tissue has great potential in regenerative medicine, as disease model and also as an alternative source for meat. Here we describe the engineering of a muscle construct, in this case from mouse myoblast progenitor cells, and the stimulation by electrical pulses.
This model system starts from a myofibroblast-populated fibrin gel that can be used to study endogenous collagen (re)organization real-time in a nondestructive manner. The model system is very tunable, as it can be used with different cell sources, medium additives, and can be adapted easily to specific needs.
Supramolecular hydrogelators based on ureido-pyrimidinones allow full control over the macroscopic gel properties and the sol–gel switching behavior using pH. Here, we present a protocol for formulating and injecting such a supramolecular hydrogelator via a catheter delivery system for local delivery directly in relevant areas in the pig heart.
We demonstrate how to determine the size distribution of semiconductor nanocrystals in a quantitative manner using Raman spectroscopy employing an analytically defined multi-particle phonon confinement model. Results obtained are in excellent agreement with the other size analysis techniques like transmission electron microscopy and photoluminescence spectroscopy.
We provide a detailed protocol to study bile acid dynamics in living cells using a genetically encoded BAS FRET sensor. This Bile Acid Sensor represents a unique tool to study (regulation of) bile acid transport and FXR activation in a wide range of cell types.
A protocol for the synthesis and characterization of colloids coated with supramolecular moieties is described. These supramolecular colloids undergo self-assembly upon the activation of the hydrogen-bonds between the surface-anchored molecules by UV-light.
This article describes a flowing microwave reactor that is used to drive efficient non-equilibrium chemistry for the application of conversion/activation of stable molecules such as CO2, N2 and CH4. The goal of the procedure described here is to measure the in situ gas temperature and gas conversion.
This publication describes the fabrication of an organ-on-chip device with integrated electrodes for direct quantification of transendothelial electrical resistance (TEER). For validation, the blood-brain barrier was mimicked inside this microfluidic device and its barrier function was monitored. The presented methods for electrode integration and direct TEER quantification are generally applicable.
This protocol describes a procedure for creating functional artificial neonatal heart models by utilizing a combination of magnetic resonance imaging, 3D printing, and injection molding. The purpose of these models is for integration into the next generation of neonatal patient simulators and as a tool for physiological and anatomical studies.
This article presents a protocol for seeding scarce population of cells using pipette-tips to droplet microfluidic devices in order to provide higher encapsulation efficiency of cells in droplets.
The fabrication process of a PDMS-based, multilayer, microfluidic device that allows in vitro transcription and translation (IVTT) reactions to be performed over prolonged periods is described. Furthermore, a comprehensive overview of the hardware and software required to automate and maintain these reactions for prolonged durations is provided.
The goal of this protocol is to execute a dynamic co-culture of human macrophages and myofibroblasts in tubular electrospun scaffolds to investigate material-driven tissue regeneration, using a bioreactor which enables the decoupling of shear stress and cyclic stretch.
This study describes a comprehensive cardiovascular magnetic resonance imaging (CMR) protocol to quantify the left ventricular functional parameters of the mouse heart. The protocol describes the acquisition, post-processing, and analysis of the CMR images as well as assessment of different cardiac functional parameters.
Traditionally, cell culture is performed on planar substrates that poorly mimic the natural environment of cells in vivo. Here we describe a method to produce cell culture substrates with physiologically relevant curved geometries and micropatterned extracellular proteins, allowing systematic investigations into cellular sensing of these extracellular cues.
We have developed a mechano-imaging pipeline to study the heterogeneous structural and mechanical atherosclerotic plaque properties. This pipeline enables correlation of the local predominant angle and dispersion of collagen fiber orientation, the rupture behavior, and the strain fingerprints of the fibrous plaque tissue.
This paper describes how three different water vortex regimes in a hyperbolic Schauberger funnel can be created, their most important characteristics, and how associated parameters such as the oxygen transfer rates can be calculated.
The fabrication of a polydimethylsiloxane (PDMS)-based bilayer device for the production of combinatorial libraries in water-in-oil emulsions (plugs) is presented here. The necessary hardware and software required to automate plug production are detailed in the protocol, and the production of a quantitative library of fluorescent plugs is also demonstrated.