This article describes microinjection and electroporation of mouse testis in vivo as a transfection technique for testicular mouse cells to study unique processes of spermatogenesis. The presented protocol involves steps of glass capillary preparation, microinjection via the efferent duct, and transfection by electroporation.
A long-term culture model of bovine granulosa cells under serum-free conditions is described. This model allows researchers to study the effects of diverse factors and conditions as different plating densities on the characteristics of estrogen-producing bovine granulosa cells.
Measuring alterations in metabolic rates is central to understanding the progression of various diseases and aging. Here, we present a novel technique to measure whole head oxygen consumption that more closely resembles the physiological state and may aid in revealing novel drugs that modify mitochondrial activity.