We provide a standardized protocol for the use of gene set enrichment analysis of transcriptomic data to identify an ideal mouse model for translational research.
This protocol can be used with DNA microarray and RNA sequencing data and can further be extended to other omics data if data are available.
We developed a protocol to assess well-being in mice during procedures using general anesthesia. A series of behavioral parameters indicating levels of well-being as well as glucocorticoid metabolites were analyzed. The protocol can serve as a general aid to estimate the degree of severity in a scientific, animal-centered manner.
Here, we provide a workflow that allows the identification of healthy and pathological cells based on their 3-dimensional shape. We describe the process of using 2D projection outlines based on the 3D surfaces to train a Self-Organizing Map that will provide objective clustering of the investigated cell populations.
This method for two-step pyrolysis online coupled to gas chromatography with mass spectrometric detection and data evaluation protocol can be used for multi-component analysis of tattoo inks and discrimination of counterfeit products.
Here we provide a protocol for the use of a dual-inlet system for single particle inductively coupled mass spectrometry which allows for a standard independent nanoparticle characterization.
A number of different procedures for preparing nanoparticles for surface analysis are presented (drop casting, spin coating, deposition from powders, and cryofixation). We discuss the challenges, opportunities, and possible applications of each method, particularly regarding the changes in the surface properties caused by the different preparation methods.
This study presents the benchmarking results for an interlaboratory comparison (ILC) designed to test the standard operating procedure (SOP) developed for gold (Au) colloid dispersions characterized by ultraviolet-visible Spectroscopy (UV-Vis), amongst six partners from the H2020 ACEnano project for sample preparation, measurement, and analysis of the results.
This protocol presents a method to analyze the emission of 3D printing pens. Particle concentration and particle size distribution of the released particle is measured. Released particles are further analyzed with transmission electron microscopy (TEM). Metal content in filaments is quantified by inductively coupled plasma mass spectrometry (ICP-MS).