Accedi

Xi’an Jiaotong University

9 ARTICLES PUBLISHED IN JoVE

image

Neuroscience

Improving the Application of High Molecular Weight Biotinylated Dextran Amine for Thalamocortical Projection Tracing in the Rat
Dongsheng Xu *1, Jingjing Cui *1, Jia Wang 1, Zhiyun Zhang 1, Chen She 1, Wanzhu Bai 1
1Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences

Here, we present a refined protocol to effectively reveal biotinylated dextran amine (BDA) labeling with a fluorescent staining method through a reciprocal neural pathway. It is suitable for analyzing the fine structure of BDA labeling and distinguishing it from other neural elements under a confocal laser scanning microscope.

image

JoVE Journal

Thermocapillary Convection Space Experiment on the SJ-10 Recoverable Satellite
Li Duan *1,2, Yongli Yin *3, Jia Wang *1, Qi Kang 1,2, Di Wu 1, Huan Jiang 1, Pu Zhang 1, Liang Hu 1
1National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 2School of Engineering Sciences, University of Chinese Academy of Sciences, 3China Astronaut Research and Training Center

A protocol for the space payload design, the space experiment on thermocapillary convection, and analyses of experimental data and images are presented in this paper.

image

Neuroscience

Visualizing the Calcitonin Gene-Related Peptide Immunoreactive Innervation of the Rat Cranial Dura Mater with Immunofluorescence and Neural Tracing
Jia Wang *1, Dongsheng Xu *1, Jingjing Cui 1, Chen She 1, Hui Wang 1, Shuang Wu 1, Ling Zou 1, Jianliang Zhang 1, Wanzhu Bai 1
1Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences

Here we present a protocol to visualize spatial correlation of calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers and blood vessels in the cranial dura mater using immunofluorescence and fluorescent histochemistry with CGRP and phalloidin, respectively. In addition, the origin of these nerve fibers was retrograde traced with a fluorescent neural tracer.

image

Chemistry

Optimization of Radiochemical Reactions using Droplet Arrays
Alejandra Rios 1,2, Travis S. Holloway 2,3, Jia Wang 2,4, R. Michael van Dam 1,2,3,4
1Physics and Biology in Medicine Interdepartmental Graduate Program, University of California Los Angeles (UCLA), 2Crump Institute of Molecular Imaging, UCLA, 3Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, 4Department of Bioengineering, UCLA

This method describes the use of a novel high-throughput methodology, based on droplet chemical reactions, for the rapid and economical optimization of radiopharmaceuticals using nanomole amounts of reagents.

image

Bioengineering

Automated Microbial Cultivation and Adaptive Evolution using Microbial Microdroplet Culture System (MMC)
Xingjin Jian *1,2, Xiaojie Guo *1,2,3, Jia Wang 4, Zheng Lin Tan 1,2,6, Xin-hui Xing 1,2,5, Liyan Wang 3, Chong Zhang 1,2,5
1Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, 2Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, 3Luoyang TMAXTREE Biotechnology Co., Ltd., 4Biochemical Engineering Research Group, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 5Center for Synthetic & Systems Biology, Tsinghua University, 6School of Life Science and Technology, Tokyo Institute of Technology

This protocol describes how to use the Microbial Microdroplet Culture system (MMC) to conduct automated microbial cultivation and adaptive evolution. MMC can cultivate and sub-cultivate microorganisms automatically and continuously and monitor online their growth with relatively high throughput and good parallelization, reducing labor and reagent consumption.

image

Medicine

Adjunctive Diode Laser Therapy and Probiotic Lactobacillus Therapy in the Treatment of Periodontitis and Peri-Implant Disease
Shuchen Yu 1, Yuchen Zhang 1, Chunhui Zhu 2, Huan Zhou 2, Jin Liu 2, Junyi Sun 1, Ang Li 1,2, Dandan Pei 1,3
1Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, 2Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, 3Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University

This article describes two protocols: 1) adjunctive diode laser therapy for treating periodontitis and 2) probiotic Lactobacillus therapy for treating peri-implant disease, with emphasis on the laser usage mode (inside or outside pocket), laser application regimen (single or multiple sessions), and a probiotic protocol of professional and home administration.

image

Neuroscience

Visualizing the Morphological Characteristics of Neuromuscular Junction in Rat Medial Gastrocnemius Muscle
Jingjing Cui *1, Shuang Wu *1, Jia Wang 1, Yuqing Wang 1, Yuxin Su 1, Dongsheng Xu 1, Yihan Liu 1, Junhong Gao 1, Xianghong Jing 1, Wanzhu Bai 1
1Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences

The protocol shows a method to examine spatial correlation among the pre-synaptic terminals, post-synaptic receptors, and peri-synaptic Schwann cells in the rat medial gastrocnemius muscle using fluorescent immunohistochemistry with different biomarkers, namely, neurofilament 200, vesicular acetylcholine transporter, alpha-bungarotoxin, and S100.

image

Immunology and Infection

A Periprosthetic Joint Candida albicans Infection Model in Mouse
Chen Yang 1, Jiaxue Zhang 1, Fei Mo 2, Peipei Zhang 1, Qingqing Li 1, Jiye Zhang 1
1School of Pharmacy, Health Science Center, Xi’an Jiaotong University, 2Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University

Periprosthetic joint infection (PJI) caused by dangerous pathogens is common in clinical orthopedics. Existing animal models cannot accurately simulate the actual situation of PJI. Here, we established a Candida albicans biofilm-associated PJI mouse model to research and develop new therapeutics for PJI.

image

Immunology and Infection

A Catheter-Related Candida albicans Infection Model in Mouse
Chen Yang 1, Fei Mo 2, Jiaxue Zhang 1, Peipei Zhang 1, Qingqing Li 1, Jiye Zhang 1
1School of Pharmacy, Health Science Center, Xi’an Jiaotong University, 2Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University

We establish a mouse model of C.albicans-associated catheter-related infection (CRI), in which biofilm forms on the catheter, and the interaction between C.albicans and host correlates well with the clinical CRI. This model helps screen therapies for C.albicans biofilm-associated CRI, laying a foundation for clinical transformation.

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2024 MyJoVE Corporation. Tutti i diritti riservati