Accedi

The conversion of allylic alcohols into epoxides using the chiral catalyst was discovered by K. Barry Sharpless and is known as Sharpless epoxidation. The use of a chiral catalyst enables the formation of one enantiomer of the product in excess. This chiral catalyst is mainly a chiral complex of titanium tetraisopropoxide and tartrate ester (specific stereoisomer). The stereoisomer used in the chiral catalyst dictates the formation of the enantiomer of the product. In other words, the use of L-(+)-diethyl tartrate leads to enantiomers having the epoxide ring below the plane, while with D-(−)-diethyl tartrate, to enantiomers with the epoxide ring above theplane. The high enantioselectivity of the reaction can be explained by considering the activation energies required for the reaction to proceed in the forward direction in the presence of the chiral catalyst. As shown in Figure 1, compared to the uncatalyzed reaction (blue curve), the activation energy of the reaction decreases dramatically with the addition of the chiral catalyst (red and green curves). Moreover, the activation energy for the formation of one enantiomer (red curve) is lowered more than that of another enantiomer (green curve), leading to the formation of one enantiomer in excess. Hence, Sharpless epoxidation reaction can be utilized for the synthesis of desired enantiomers of the product.

Figure1

The stereochemistry of the product formed when any allylic alcohol is subjected to Sharpless epoxidation can be predicted by simply orienting the allylic alcohol molecule in a plane with the hydroxyl groups pointing towards the lower right corner, as shown in Figure 2. On this planar structure, D-(−)-diethyl tartrate delivers the oxygen from the top face of the alkene, making the epoxide formation feasible from above the plane, while L-(+)-diethyl tartrate delivers the oxygen from the bottom face of the alkene, thereby installing the epoxide ring from below the plane.

Figure2

Tags

Sharpless EpoxidationAllylic AlcoholsEpoxidesChiral CatalystTitanium TetraisopropoxideTartrate EsterEnantioselectivityActivation EnergyStereochemistry

Dal capitolo 11:

article

Now Playing

11.10 : Sharpless Epoxidation

Eteri, epossidi e solfuri

3.7K Visualizzazioni

article

11.1 : Struttura e nomenclatura degli eteri

Eteri, epossidi e solfuri

10.8K Visualizzazioni

article

11.2 : Proprietà fisiche degli eteri

Eteri, epossidi e solfuri

6.8K Visualizzazioni

article

11.3 : Dagli alcoli agli eteri: disidratazione degli alcoli e sintesi di Williamson degli eteri

Eteri, epossidi e solfuri

9.9K Visualizzazioni

article

11.4 : Eteri da alcheni: addizione alcolica e alcossimercurazione-demercurazione

Eteri, epossidi e solfuri

7.6K Visualizzazioni

article

11.5 : Da eteri ad alogenuri alchilici: scissione acido-catalizzata

Eteri, epossidi e solfuri

5.5K Visualizzazioni

article

11.6 : Autossidazione di eteri a perossidi e idroperossidi

Eteri, epossidi e solfuri

7.1K Visualizzazioni

article

11.7 : Gli eteri corona

Eteri, epossidi e solfuri

5.0K Visualizzazioni

article

11.8 : Struttura e nomenclatura degli epossidi

Eteri, epossidi e solfuri

6.2K Visualizzazioni

article

11.9 : Preparazione degli epossidi

Eteri, epossidi e solfuri

7.2K Visualizzazioni

article

11.11 : Apertura dell'anello degli epossidi acido-catalizzata

Eteri, epossidi e solfuri

6.9K Visualizzazioni

article

11.12 : Apertura dell'anello degli epossidi base-catalizzata

Eteri, epossidi e solfuri

8.1K Visualizzazioni

article

11.13 : Struttura e nomenclatura di tioli e solfuri

Eteri, epossidi e solfuri

4.5K Visualizzazioni

article

11.14 : Preparazione e reazioni dei tioli

Eteri, epossidi e solfuri

5.8K Visualizzazioni

article

11.15 : Preparazione e reazioni dei solfuri

Eteri, epossidi e solfuri

4.6K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati