All
Research
Education
Ricerca
Didattica
Business
Soluzioni
IT
EN - English
CN - 中文
DE - Deutsch
ES - Español
KR - 한국어
IT - Italiano
FR - Français
PT - Português
TR - Türkçe
JA - 日本語
PL - Polski
RU - Русский
HE - עִברִית
AR - العربية
Accedi
Chapter 16
The moment of inertia for a differential element of a rigid body can be calculated by multiplying the mass of the element by the square of the shortest ...
The inertia tensor is used to describe the distribution of mass and rotational inertia of a rigid body. The inertia tensor is represented using a 3×3 ...
The moment of inertia is typically associated with principal axes, but it can also be computed for any random axis. When an arbitrary axis is under ...
Consider a rigid body of mass 'm' and a center of mass at point G, rotating in an inertial reference frame. At an arbitrary point P, the angular ...
The angular momentum for a rigid body can be expressed as the integral of the cross-product of the position vector of the mass element with the ...
When one considers a rigid body undergoing a plane motion, which is essentially a blend of translational and rotational movement, the application of ...
Consider a rigid body undergoing a general planar motion. Its center of mass is located at point G. The kinetic energy of the i-th particle of the rigid ...
The motion of a rigid body can be described using equations for translational motion and rotational motion about the center of mass. Newton's Second ...
Consider a rigid body rotating with an angular velocity of ω in an inertial frame of reference. Another rotating frame is attached to the body that ...
Torque-free motion refers to the movement of a rigid body without any external torques acting upon it. Consider an axisymmetric object, with the z-axis ...
Riservatezza
Condizioni di utilizzo
Politiche
Contattaci
SUGGERISCI JOVE ALLA BIBLIOTECA
Newsletter di JoVE
JoVE Journal
Raccolta di metodi
JoVE Encyclopedia of Experiments
Archivio
JoVE Core
JoVE Science Education
JoVE Lab Manual
JoVE Quiz
JoVE Playlist
Autori
Personale delle biblioteche
Accesso
CHI SIAMO
JoVE Sitemap
Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati