Accedi

Gas Absorber

Panoramica

Source: Michael G. Benton and Kerry M. Dooley, Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA

Gas absorbers are used to remove contaminants from gas streams. Multiple designs are used to accomplish this objective1. A packed bed column uses gas and liquid streams running counter to each other in a column packed with loose packing materials, such as ceramics, metals, and plastics, or structured packing1. The packed bed uses surface area created by the packing to create a maximum amount of efficient contact between the two phases1. The systems are low maintenance and can handle corrosive materials with high mass transfer rates1. Spray columns are another type of absorber, which uses constant direct contact between the two phases, with gas moving up and liquid being sprayed down into the gas flow1. This system only has one stage and poor mass transfer rates, but is very effective for solutes with high liquid solubility1.

The goal of this experiment is to determine how variables including gas flow rate, water flow rate, and carbon dioxide concentration affect the overall mass transfer coefficient in a gas absorber. Understanding how these parameters affect CO2 removal enables contaminant removal to be optimized. The experiment uses a randomly packed water counter-flow gas absorption column. Eight runs with two different gas flow rates, liquid flow rates, and CO2 concentrations were used. During each run, the partial pressures were taken from the bottom, middle, and top of the column unit, and the equilibrium partial pressures were calculated. These pressures were then used to find the mass transfer coefficient, and the mass transfer coefficients were compared to theoretical values.

Procedura

The experiment uses a randomly packed water counter-flow gas absorption column. The column is packed with 34 cm of 13 mm berl saddles with 465 m2/m3 surface (effective) area. The pressure entering the system is about 1.42 bar with a temperature of about 26 °C, and valves at the entrance and exit of the column allow gas to escape. An "Oxy Baby" Infra-red spectrometer, directly connected to the unit at various locations, measures gas composition, and tanks of pur

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Risultati

Partial pressures were taken from each trial run. Mass transfer coefficients were calculated from these and compared to predicted values (Figure 2). The predicted values arise from the calculated operating line for the absorber (see reference 2 for an in-depth discussion of the operating line). Solid lines represent the values calculated using the operating line, while triangles represent the experimental mass transfer coefficient values. Confidence intervals

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Riferimenti
  1. Absorbers - Separations: Chemical - MEL Equipment Encyclopedia 4.0. N.p., n.d. Web. 28 Jan. 2017.
  2. Welty, James R., Rorrer, Gregory L., and David G. Foster. Fundamentals of Momentum, Heat, and Mass Transfer. 6th ed. John Wiley & Sons, Inc., Hoboken, NJ, 2015
  3. Chloric Gas Absorption." GEA engineering for a better world. N.p., n.d. Web. 28 Jan. 2017.
  4. NaturalGas.org." NaturalGasorg. N.p., n.d. Web. 28 Jan. 2017.
  5. Fundamentals of Natural Gas Processing, A.J. Kidnay and W.R. Parrish, Taylor and Francis, Boca Raton, 2006.
Tags
Gas AbsorberContaminantsGas StreamsExhaustColumnRandom Packing MaterialStructured Packing MaterialPacked Bed AbsorbersCounter Current FlowAbsorption ProcessOperating ParametersCarbon DioxideWaterSeparation EfficiencyGas Absorption UnitLiquid SolventMass TransferMaterial BalanceVapor Flow RateLiquid Flow RateMole FractionMass Transfer CoefficientPartial PressureEquilibrium PressureHenry s Law

Vai a...

0:07

Overview

0:58

Principles of Gas Adsorption

3:06

Operating the Gas Absorber

4:57

Results

6:18

Applications

7:25

Summary

Video da questa raccolta:

article

Now Playing

Gas Absorber

Chemical Engineering

36.2K Visualizzazioni

article

Testing the Heat Transfer Efficiency of a Finned-tube Heat Exchanger

Chemical Engineering

17.6K Visualizzazioni

article

Using a Tray Dryer to Investigate Convective and Conductive Heat Transfer

Chemical Engineering

43.4K Visualizzazioni

article

Viscosity of Propylene Glycol Solutions

Chemical Engineering

31.7K Visualizzazioni

article

Porosimetry of a Silica Alumina Powder

Chemical Engineering

9.5K Visualizzazioni

article

Demonstration of the Power Law Model Through Extrusion

Chemical Engineering

9.9K Visualizzazioni

article

Vapor-liquid Equilibrium

Chemical Engineering

84.5K Visualizzazioni

article

The Effect of Reflux Ratio on Tray Distillation Efficiency

Chemical Engineering

76.3K Visualizzazioni

article

Efficiency of Liquid-liquid Extraction

Chemical Engineering

47.7K Visualizzazioni

article

Liquid Phase Reactor: Sucrose Inversion

Chemical Engineering

9.5K Visualizzazioni

article

Crystallization of Salicylic Acid via Chemical Modification

Chemical Engineering

23.8K Visualizzazioni

article

Single and Two-phase Flow in a Packed Bed Reactor

Chemical Engineering

18.6K Visualizzazioni

article

Kinetics of Addition Polymerization to Polydimethylsiloxane

Chemical Engineering

15.8K Visualizzazioni

article

Catalytic Reactor: Hydrogenation of Ethylene

Chemical Engineering

29.6K Visualizzazioni

article

Evaluating the Heat Transfer of a Spin-and-Chill

Chemical Engineering

7.2K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati