A subscription to JoVE is required to view this content. Sign in or start your free trial.
In this article, we detail methods to characterize an enzyme's ability to retain function when incubated at 37 °C in human serum, a pharmacological property referred to as its serum stability. This ability may be a key factor in predicting an enzyme's pharmacokinetic profile and its suitability for therapeutic use.
The concept of enzyme stability is typically used to refer to an enzyme's thermostability - its ability to retain structure and activity as temperature increases. For a therapeutic enzyme, other measures of stability may also be critical, particularly its ability to retain function in human serum at 37 °C, which we refer to as serum stability. Here, we describe an in vitro assay to assess the serum stability of the wildtype Homo sapiens adenosine deaminase I (HsADA1) enzyme using an absorbance-based microplate procedure. Specifically, this manuscript describes the preparation of buffers and reagents, a method arranging for the coincubation of HsADA1 in serum, a method to analyze the test samples using a microplate reader, and an accompanying analysis to determine the fraction of activity that an HsADA1 enzyme retains in serum as a function of time. We further discuss considerations to adapt this protocol to other enzymes, using an example of a Homo sapiens kynureninase enzyme, to help aid the protocol's adaptation to other enzymes where serum stability is of interest.
The following method allows a user to quantitatively assess an enzyme's ability to retain its activity when exposed to conditions that mimic what it will encounter following intravenous injection. The in vitro method mimics such in vivo conditions and consists of the incubation of the enzyme in pooled human serum at 37 °C and time-coursed analyses of retention of enzyme activity. We refer to an enzyme's ability to retain activity in these conditions as its serum stability, and the analysis method for enzyme activity takes advantage of differences in absorbance between an enzyme's substrate and the resulting product. The concept of se....
1. Serum incubation
The figures show the results of the assay run when conducted with wildtype HsADA1. Figure 3A,B illustrate the absorbance decline curves at 260 nm of the samples originating from the 1x PBS/serum-enzyme mixtures for wildtype HsADA1 after the addition of adenosine. This declining absorbance as a function of time data is what the user may expect upon successful completion of the microplate-based assay and is similar to absorbance data that would arise after adding sufficient am.......
This protocol uses absorbance change as the substrate is converted to the product to gauge the activity of an enzyme. As such, the substrate and product must have distinct spectral profiles. This is the case with adenosine and inosine both having distinct spectral profiles and extinction coefficients between 260-265 nm6,8,12,13. This assay is inspired by several previous works. Kalackar, for ex.......
This work was supported by the National Institutes of Health [1DP2CA280622-01] and funding from Biolocity. We thank Dr. Maria Jennings and Andrea Fox for providing the HsADA1 and HsKYNase expression vectors.
....Name | Company | Catalog Number | Comments |
Adenosine | Sigma Aldrich | A9251-25G | 25 g |
BioTek Synergy HT Microplate Reader | |||
Eppendorf LoBind Microcentrifuge Tubes: Protein | Fisher Scientific | 13-698-795 | 2 mL |
Glycerol | Fisher Scientific | G33-4 | 4 L |
HsKYNase66-W102H-T333N | In-house | ||
Human Serum, Pooled | MP Biomedicals | 92931149 | 100 mL |
Hydroxy-kynurenine | Cayman Chemicals | 27778 | |
Inosine | TCI | I0037 | 25 g |
PBS, 1x pH 7.4+/- 0.1 | Corning | 21-040-CM | |
Pyridoxal 5-phosphate monohydrate, 99% | Thermo Scientifc | 228170010 | 1 g |
UV-STAR MICROPLATE, 96 WELL, COC, F-BOTTOM | Greiner Bio | 655801 | |
Wildtype Human Adenosine Deaminase 1 | In-house |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved