Msh2-Msh6 is responsible for initiating repair of replication errors in DNA. Here we present a transient kinetics approach towards understanding how this critical protein works. The report illustrates stopped-flow experiments for measuring the coupled DNA binding and ATPase kinetics underlying Msh2-Msh6 mechanism of action in DNA repair.
This protocol presents an efficient method for imaging the live Drosophila pupal eye neuroepithelium. This method compensates for tissue movement and uneven topology, enhances visualization of cell boundaries through the use of multiple GFP-tagged junction proteins, and uses an easily-assembled imaging rig.
We use 3D printing to fabricate anisotropic particles in the shapes of jacks, crosses, tetrads, and triads, whose alignments and rotations in turbulent fluid flow can be measured from multiple simultaneous video images.
Here we present a protocol for anaerobic protein purification, anaerobic protein concentration, and subsequent kinetic characterization using an oxygen electrode system. The method is illustrated using the enzyme DesB, a dioxygenase enzyme which is more stable and active when purified and stored in an anaerobic environment.
This paper presents a surgical method for dissecting Drosophila pupal retinas along with protocols for the processing of tissue for immunohistochemistry, western analysis, and RNA-extraction.
Using quantum-dot-labeled DNA and total internal reflection fluorescence microscopy, we can investigate the reaction mechanism of restriction endonucleases while using unlabeled protein. This single-molecule technique allows for massively multiplexed observation of individual protein-DNA interactions, and data can be pooled to generate well-populated dwell-time distributions.
The study details the methodology of FRET mapping including the selection of labeling sites, choice of dyes, acquisition, and data analysis. This methodology is effective at determining binding sites, conformational changes, and dynamic motions in protein systems and is most useful if performed in conjunction with existing 3-D structural information.
The protocol presented shows digital measurement and analysis of continuous leaf physiognomic traits on fossil leaves to reconstruct paleoclimate and paleoecology using the digital leaf physiognomy and leaf mass per area reconstruction methods.
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved