The shaft PQ is subjected to a twisting force when equal and opposite torques are applied on either side. A section that cuts perpendicular to the shaft's axis at any arbitrary point R is examined to understand this. When the free-body diagram of the QR segment is analyzed, it reveals the shearing forces exerted by the PR portion onto the QR segment as the shaft experiences twisting.

Applying equilibrium conditions to the QR segment establishes that the internal shearing forces within the section directly correlate with the internal torque. Here, 'r' signifies the perpendicular distance from the axis of the shaft to the shearing force. Next, a small area element of the shaft is taken into account. The shearing force can be expressed as the multiplication of the shearing stress and the area element. Upon substituting this relation, an expression for torque in terms of shearing stress is derived.

Equation 1

This derived relation must hold true for the shearing stresses in any shaft cross-section. However, it does not provide insights into the distribution of these stresses across the cross-section. Lastly, it is important to note that the distribution of shearing stresses in an elastic shaft cannot be determined solely by statics. It requires deformation analysis for accurate determination.

タグ
Shaft StressesTwisting ForceInternal Shearing ForcesTorqueShearing StressEquilibrium ConditionsFree body DiagramCross sectionDeformation AnalysisElastic Shaft

章から 19:

article

Now Playing

19.1 : Stresses in a Shaft

ねじれ

265 閲覧数

article

19.2 : 円形シャフトの変形

ねじれ

183 閲覧数

article

19.3 : 円形シャフト - 線形範囲の応力

ねじれ

174 閲覧数

article

19.4 : ねじれ角度 - 弾性範囲

ねじれ

176 閲覧数

article

19.5 : ねじれの角度:問題解決

ねじれ

211 閲覧数

article

19.6 : トランスミッションシャフトの設計

ねじれ

193 閲覧数

article

19.7 : 円形シャフトの応力集中

ねじれ

122 閲覧数

article

19.8 : 円形シャフトの塑性変形

ねじれ

132 閲覧数

article

19.9 : 円形シャフト - 弾塑性材料

ねじれ

75 閲覧数

article

19.10 : 円形シャフトの残留応力

ねじれ

114 閲覧数

article

19.11 : 非円形部材のねじり

ねじれ

91 閲覧数

article

19.12 : 薄肉中空シャフト

ねじれ

133 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved