このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
Here we describe our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. Neurons expressing ChR2 are identified by their response to blue light. The method uses standard extracellular recording equipment, and serves as an inexpensive alternative to calcium imaging or visually-guided patching.
神経生理学における主要な課題は、大脳皮質に多数の阻害性の細胞型の応答特性および機能を特徴づけることであった。 ここで私たちは、リマと同僚1によって開発された方法を使用して麻酔をかけたマウスの大脳皮質内で識別抑制性介在ニューロンから安定し、十分に単離され、単一ユニット記録を取得するための戦略を共有しています。記録は、特定のニューロンの亜集団にチャネルロドプシン-2(ChR2を)を発現するマウスで行われる。集団のメンバーは、青色光の短いフラッシュに対する反応により同定される。 「PINP」と呼ば、またはニューロン集団の光刺激アシスト識別 - - この技術は、標準的な細胞外記録装置で実現することができる。これは、遺伝的に同定された細胞に細胞外記録を標的とする目的のために、カルシウムイメージングまたは視覚誘導パッチに安価でアクセス可能な代替物として機能することができる。 HERE私たちは毎日の練習方法を最適化するための一連のガイドラインを提供する。我々は、具体的にはパルブアルブミン陽性(PV +)細胞を標的化するための戦略を洗練が、それはそのようなソマトスタチン発現(SOM +)とカルレチニン発現(CR +)介在ニューロンとして、同様に他の介在ニューロンタイプのために働くことを見出した。
Characterizing the myriad cell types that comprise the mammalian brain has been a central, but long-elusive goal of neurophysiology. For instance, the properties and function of different inhibitory cell types in the cerebral cortex are topics of great interest but are still relatively unknown. This is in part because conventional blind in vivo recording techniques are limited in their ability to distinguish between different cell types. Extracellular spike width can be used to separate putative parvalbumin-positive inhibitory neurons from excitatory pyramidal cells, but this method is subject to both type I and type II errors2,3. Alternatively, recorded neurons can be filled, recovered, and stained to later confirm their morphological and molecular identity, but this is a pain-staking and time-consuming process. Recently, genetically identified populations of inhibitory interneurons have become accessible by means of calcium imaging or visually guided patch recordings. In these approaches, viral or transgenic expression of a calcium reporter (such as GCaMP) or fluorescent protein (such as GFP) allows identification and characterization of cell types defined by promoter expression. These approaches use 2-photon microscopy, which requires expensive equipment, and are also limited to superficial cortical layers due to the light scattering properties of brain tissue.
Recently, Lima and colleagues1 developed a novel application of optogenetics to target electrophysiological recordings to genetically identified neuronal types in vivo, termed “PINP” – or Photostimulation-assisted Identification of Neuronal Populations. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. Unlike many other optogenetic applications, the goal is not to manipulate circuit function but simply to identify neurons belonging to a genetically-defined class, which can then be characterized during normal brain function. The technique can be implemented with standard extracellular recording equipment and can therefore serve as an accessible and inexpensive alternative to calcium imaging or visually-guided patching. Here we describe an approach to PINPing specific cell types in the anesthetized auditory cortex, with the expectation that the more general points can be usefully applied in other preparations and brain regions.
In cortex, PINP holds particular promise for investigating the in vivo response properties of inhibitory interneurons. GABAergic interneurons comprise a small, heterogeneous subset of cortical neurons4. Different subtypes, marked by the expression of particular molecular markers, have recently been shown to perform different computational roles in cortical circuits5-9. As genetic tools improve it may eventually be possible to distinguish morphologically- and physiologically-separable types that fall within these broad classes. We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. This strategy was developed specifically for targeting parvalbumin-positive (PV+) cells, but we have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons. Although PINPing is conceptually straightforward, it can be surprisingly unyielding in practice. We learned a number of tips and tricks through trial-and-error that may be useful to others attempting the method.
注:オレゴン大学の動物実験委員会によって承認され、次のプロトコルが健康ガイドラインの国立研究所によるものである。
1.急性手術
2.録画セットアップ
3.ストレートPINPイン」
ここでは、「リマら 1。 表1の詳細を示唆麻酔カクテル、ケタミン-メデトミジン-アセプロマジンを(によって開発された光遺伝学的方法を使用して、麻酔したマウス皮質で遺伝的に分類された抑制性介在からシングルユニット記録を取得するための我々の戦略を共有するKMA」)。 図1は、4図3は、Arduinoのマイクロコントローラと光出力をゲーティング?...
PINPは、概念的には簡単であるが、それは実際に挑戦することができます。成功の主要な決定は、電極の選択である。電気リスニング半径は重要なパラメータである。それは1つがそれに応じて前進速度を調整できるように、先端が、少し離れChR2を+細胞からまだあるときに光誘発スパイクを検出するのに十分な大きさでなければならない。同時に、それは優れた単体分離を可能にするために?...
The authors have no competing financial interests.
This work was funded by the Whitehall Foundation and the NIH. We thank Clifford Dax (University of Oregon Technical Support Administration) for his help and expertise in designing a circuit for light delivery.
Name | Company | Catalog Number | Comments |
ChR2-EYFP Line | Jackson Colonies | 12569 | |
Pvalb-iCre (PV) Line | Jackson Colonies | 8069 | |
Sst-iCre (SOM) Line | Jackson Colonies | 13044 | |
Cr-iCre (CR) Line | Jackson Colonies | 10774 | |
Agarose | Sigma-Aldrich | A9793 | Type III-A, High EEO |
Micro Point (dural hook) | FST | 10066-15 | |
Surgical Scissors | FST | 14084-09 | |
Scalpel | FST | 10003-12 (handle), 10011-00 (blades) | |
Puralube Ophthalmic Ointment | Foster & Smith | 9N-76855 | |
Homeothermic Blanket | Harvard Apparatus | 507220F | |
Tungsten Microelectrodes | A-M Systems | 577200 | 12 MΩ AC resistance, 127 μm diameter, 12° tapered tip, epoxy-coated |
Capillary Glass Tubing | Warner Instruments | G150TF-3 | |
Heat Shrink Tubing | DigiKey | A332B-4-ND | |
Zapit Accelerator | DVA | SKU ZA/ZAA | Use with standard Super Glue. |
Microelectrode AC Amplifier 1800 | AM Systems | 700000 | |
MP-285 Motorized Micromanipulator | Sutter | MP-285 | |
4-channel Digital Oscilloscopes | Tektronix | TDS2000C | |
Powered Speakers | Harman | Model JBL Duet | |
Manual Manipulator | Scientifica | LBM-7 | |
800 µm Fiber Optic Patch Cable | ThorLabs | FC/PC BFL37-800 | |
Power Meter | ThorLabs | PM100D (Power Meter), S121C (Standard Power Sensor) | |
475 nm Cree XLamp XP-E | DigiKey | XPEBLU-L1-R250-00Y01DKR-ND | LED power and efficiency are continually increasing, so we recommend checking for the latest products (www.cree.com). |
Arduino UNO | DigiKey | 1050-1024-ND |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved