É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Here we describe our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. Neurons expressing ChR2 are identified by their response to blue light. The method uses standard extracellular recording equipment, and serves as an inexpensive alternative to calcium imaging or visually-guided patching.
Um grande desafio em neurofisiologia tem sido a de caracterizar as propriedades de resposta e função dos inúmeros tipos de células inibitória no córtex cerebral. Nós aqui partilhar a nossa estratégia para a obtenção estáveis, bem isoladas gravações de uma única unidade de interneurônios inibitórios identificadas no córtex anestesiado mouse usando um método desenvolvido por Lima e colaboradores um. As gravações são realizadas em ratinhos que expressam channelrodopsina-2 (ChR2) em subpopulações neuronais específicas. Os membros da população são identificados pela sua resposta a um breve flash de luz azul. Esta técnica - chamada de "PINP", ou Identificação fotoestimulação-assistida de Populações Neuronais - pode ser implementado com equipamento de gravação extracelular padrão. Ela pode servir como uma alternativa barata e acessível a imagiologia de cálcio ou patching visualmente-guiado, com o objectivo de direccionamento gravações extracelulares de células identificadas geneticamente. Here nós fornecemos um conjunto de diretrizes para a otimização do método na prática diária. Nós refinado nossa estratégia especificamente para alvejar as células parvalbumina-positivo (PV +), mas descobriram que ele funciona para outros tipos interneuron, bem como, tais como (CR +) interneurons expressando Calretinin-somatostatina expressando (SOM +) e.
Characterizing the myriad cell types that comprise the mammalian brain has been a central, but long-elusive goal of neurophysiology. For instance, the properties and function of different inhibitory cell types in the cerebral cortex are topics of great interest but are still relatively unknown. This is in part because conventional blind in vivo recording techniques are limited in their ability to distinguish between different cell types. Extracellular spike width can be used to separate putative parvalbumin-positive inhibitory neurons from excitatory pyramidal cells, but this method is subject to both type I and type II errors2,3. Alternatively, recorded neurons can be filled, recovered, and stained to later confirm their morphological and molecular identity, but this is a pain-staking and time-consuming process. Recently, genetically identified populations of inhibitory interneurons have become accessible by means of calcium imaging or visually guided patch recordings. In these approaches, viral or transgenic expression of a calcium reporter (such as GCaMP) or fluorescent protein (such as GFP) allows identification and characterization of cell types defined by promoter expression. These approaches use 2-photon microscopy, which requires expensive equipment, and are also limited to superficial cortical layers due to the light scattering properties of brain tissue.
Recently, Lima and colleagues1 developed a novel application of optogenetics to target electrophysiological recordings to genetically identified neuronal types in vivo, termed “PINP” – or Photostimulation-assisted Identification of Neuronal Populations. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. Unlike many other optogenetic applications, the goal is not to manipulate circuit function but simply to identify neurons belonging to a genetically-defined class, which can then be characterized during normal brain function. The technique can be implemented with standard extracellular recording equipment and can therefore serve as an accessible and inexpensive alternative to calcium imaging or visually-guided patching. Here we describe an approach to PINPing specific cell types in the anesthetized auditory cortex, with the expectation that the more general points can be usefully applied in other preparations and brain regions.
In cortex, PINP holds particular promise for investigating the in vivo response properties of inhibitory interneurons. GABAergic interneurons comprise a small, heterogeneous subset of cortical neurons4. Different subtypes, marked by the expression of particular molecular markers, have recently been shown to perform different computational roles in cortical circuits5-9. As genetic tools improve it may eventually be possible to distinguish morphologically- and physiologically-separable types that fall within these broad classes. We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. This strategy was developed specifically for targeting parvalbumin-positive (PV+) cells, but we have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons. Although PINPing is conceptually straightforward, it can be surprisingly unyielding in practice. We learned a number of tips and tricks through trial-and-error that may be useful to others attempting the method.
NOTA: O seguinte protocolo está de acordo com os Institutos Nacionais de Saúde como diretrizes aprovados pela Universidade de Oregon Animal Care e do Comitê Use.
1. Cirurgia aguda
2. Gravação de Set-up
3. Em linha reta PINP-in '
Nós aqui partilhar a nossa estratégia para a obtenção de gravações de uma única unidade de interneurônios inibitórios geneticamente classificados no córtex anestesiado rato, utilizando um método optogenetic desenvolvido por Lima et al. A Tabela 1 detalha o cocktail anestésico sugerido, quetamina-medetomidina-acepromazina (1 ". KMA "). A Figura 1 representa um microeléctrodo de tungsténio, preparado para a gravação. A figura 2
Embora PINP é conceitualmente simples, ele pode ser um desafio na prática. Um dos principais determinantes do sucesso é a escolha do eletrodo. O raio de audição eléctrica é o parâmetro crítico. Ele deve ser suficientemente grande para detectar picos de luz evocado quando a ponta é ainda a certa distância a partir de uma célula ChR2 +, de modo que se pode ajustar a velocidade de avanço em conformidade. Ao mesmo tempo, deve ser restringido o suficiente para permitir um bom isolamento única unidade. Ou seja, ...
The authors have no competing financial interests.
This work was funded by the Whitehall Foundation and the NIH. We thank Clifford Dax (University of Oregon Technical Support Administration) for his help and expertise in designing a circuit for light delivery.
Name | Company | Catalog Number | Comments |
ChR2-EYFP Line | Jackson Colonies | 12569 | |
Pvalb-iCre (PV) Line | Jackson Colonies | 8069 | |
Sst-iCre (SOM) Line | Jackson Colonies | 13044 | |
Cr-iCre (CR) Line | Jackson Colonies | 10774 | |
Agarose | Sigma-Aldrich | A9793 | Type III-A, High EEO |
Micro Point (dural hook) | FST | 10066-15 | |
Surgical Scissors | FST | 14084-09 | |
Scalpel | FST | 10003-12 (handle), 10011-00 (blades) | |
Puralube Ophthalmic Ointment | Foster & Smith | 9N-76855 | |
Homeothermic Blanket | Harvard Apparatus | 507220F | |
Tungsten Microelectrodes | A-M Systems | 577200 | 12 MΩ AC resistance, 127 μm diameter, 12° tapered tip, epoxy-coated |
Capillary Glass Tubing | Warner Instruments | G150TF-3 | |
Heat Shrink Tubing | DigiKey | A332B-4-ND | |
Zapit Accelerator | DVA | SKU ZA/ZAA | Use with standard Super Glue. |
Microelectrode AC Amplifier 1800 | AM Systems | 700000 | |
MP-285 Motorized Micromanipulator | Sutter | MP-285 | |
4-channel Digital Oscilloscopes | Tektronix | TDS2000C | |
Powered Speakers | Harman | Model JBL Duet | |
Manual Manipulator | Scientifica | LBM-7 | |
800 µm Fiber Optic Patch Cable | ThorLabs | FC/PC BFL37-800 | |
Power Meter | ThorLabs | PM100D (Power Meter), S121C (Standard Power Sensor) | |
475 nm Cree XLamp XP-E | DigiKey | XPEBLU-L1-R250-00Y01DKR-ND | LED power and efficiency are continually increasing, so we recommend checking for the latest products (www.cree.com). |
Arduino UNO | DigiKey | 1050-1024-ND |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados