Method Article
* これらの著者は同等に貢献しました
Fourier Transform Infrared (FT-IR) spectroscopic imaging is a fast and label-free approach to obtain biochemical data sets of cells and tissues. Here, we demonstrate how to obtain high-definition FT-IR images of tissue sections towards improving disease diagnosis.
高精細なフーリエ変換赤外(FT-IR)分光イメージングフーリエ生化学的情報が関連付けられている詳細な画像を得るための新たなアプローチである。組織のFT-IRイメージングは、中赤外の異なる領域は、次に存在し、組成物に関連することができる細胞または組織内の異なる化学結合( 例えば、C = O、CH、NH)によって吸収されるという原理に基づいている生体分子( 例えば、脂質、DNA、グリコーゲン、タンパク質、コラーゲン)。 FT-IR画像では、画像内の各ピクセルは、細胞型又は疾患の型分類のために利用することができる細胞の生化学的状態に関する情報を与えることができる全体の赤外線(IR)スペクトルを含む。高精細画像処理機能を可能にするために、既存の機器を変更する方法、FT-IRシステムを使用して、ヒト組織からのIR画像を取得する方法、およびどのようにFT-IRイメージを視覚化するために:本論文では、表示されます。次に、FT-IRのいくつかのアプリケーションを紹介病理学のために、例として、肝臓と腎臓を使用。 FT-IRイメージングは、疾患プロセスの一部として、生体分子の変化に新たな洞察を与えることに向けて完全に無標識の非摂動経路で細胞および組織からの生化学的情報を得るための新規経路を提供するのにエキサイティングなアプリケーションを保持する。さらに、この生化学的情報は、潜在的に病気の診断の特定の態様の目的と自動分析を可能にすることができる。
IR分光法は、1930年代以来、何らかの形で利用可能な分析ツールとなっています。しかし、それだけでFT-IRによる組織画像の面積が爆発したこと最後の10年以内になっている。組織画像化のためのFT-IRの進歩は、3つの主要動向によって大部分が駆動されています:1)は、通常、IR感度検出器1の数千を持っている大規模な焦点面アレイ(FPA)検出器の利用可能性データ収集の速度を増加、2、2)高度な処理アルゴリズムの開発及び大規模なハイパースペクトルデータセット3を取り扱うための計算能力、および3)FT-IRイメージングシステムのモデル化は、空間分解能4,5を最大化する。組織17からポイントスペクトルや地図を入手するための手順を詳細にネイチャープロトコル紙に加え、数々の高品質と最近6-16を FT-IR分光法の分野の見直しを非常に大規模な記事がありました。本稿では、protのに焦点を当てます高精細機能を有する改変FT-IRシステムで128×128 FPA検出器を使用して組織の画像を得るためocol。
FT-IRイメージングは、長いすべてのピクセルは、生化学豊富な情報を有する画像を得る能力に起因する、細胞および組織のイメージングのための潜在的に望ましいツールであることが示唆されている。 FT-IRイメージングは、サンプル中の異なる生体分子を定量的に中赤外線の異なる領域を吸収するという原理に基づいている。これは、「生化学的指紋」の導出が可能になります。このフィンガープリントは、異なる細胞型および疾患状態の間で変化させるために多くの研究で示された。汚れ及び免疫組織化学的マーカーは、診断および治療選択肢を導くために使用される細胞タイプおよび組織構造を可視化し、識別するために使用する必要がある従来の病理学の実践とは異なり、FT-IRからの画像は、組織の固有の生化学に基づいて形成される。現在techniq診断のための染色組織のueが、時間がかかり、面倒で、破壊的であり、FT-IRは、このプロセスは、迅速な非破壊、高度に自動化され、より客観的にする可能性を提供する一方で、病理医の主観的な専門知識を必要とする。また、FT-IRは、従来の染色技術を用いて容易にアクセスできないかもしれない付加的な生化学的情報を得るための新規な経路を提供する。
近年の最も刺激的な進歩の一つは、現在、包括的な疾患の診断のために重要である細胞タイプおよび組織構造の可視化および特徴付けを可能にすることができる高解像度イメージング手法の利用可能性であった。これらの技術の1つは、多くの非常に刺激的な研究が、そのアプリケーション19-25を示すとともに、高解像度画像18を可能にする高屈折率のソリッドイマージョンレンズ(SIL)を内蔵して減衰全反射(ATR)FT-IRである。加えて、それワットとして最近ATR画像に関 連付けられた増加した空間分解能が内皮細胞および乳癌診断26の主要な構成要素を形成乳房組織における筋上皮細胞の可視化および分類を可能にすることができることを実証した。 ATRイメージングは非常に有用であるが、この技術は、FT-IR画像を形成する組織と接触するようにSILを必要とする。したがって、その使用は多少の組織の大きな領域を迅速に画像化されなければならない組織病理学のために制限されています。
第二のアプローチは、IRの明るい源としてシンクロトロンを使用する既存のFT-IRシステムに高倍率の対物レンズを結合することによって実証された、それは完全に0.54 xは0.54ミクロンの有効画素サイズのFPAおよび画像を照明することが可能である。私たちは、従来のFT-IRシステム4を使用して解決可能ではなかった乳癌および前立腺組織における主要な構造を視覚化するためにこれが許可された。 IR画像の空間resolutioでこれらの劇的な増加ながらnはエキサイティングであった、その使用は、シンクロトロンを必要とする制限されたままであった。続いて、最適なシステムは、シンクロトロン源を必要とせずに1.1×1.1μmの画素サイズを有する高精細画像処理機能を可能にではなく、伝統的なグローバーのIR源5を用いなかったことを設計した。この記事では、複数のIR目標(15X、36X、および74X)を使用して、対雑音比が許容可能な信号を有する組織の回折限界のIRイメージングを可能にするために、既存の市販のFT-IRイメージングシステムを修正する方法を示しています。 3つの目的を持つ有効画素サイズは5.5 xは5.5ミクロン(15X)、2.2×2.2ミクロン(36X)と1.1×1.1ミクロン(74X)。次に、肝臓および腎臓生検27における疾患検出のための空間分解能の向上の重要性のいくつかの例を与える。
1. FT-IR顕微鏡を設定し、組織画像を取得
2.高精細機能のFT-IR顕微鏡の適応
注:ほとんどのFT-IRシステムは、客観約15X倍率と0.5の開口数(NA)が装備されている。高精細モードの画像に、IR互換36Xまたは74X対物レンズは、回折制限された画像処理機能を与えるために使用することができる。
3.可視化と分類IRスペクトルデータセット
注:このセクションでは、我々はそのようなENVI + IDLとして地理空間画像処理解析ソフトを用いてスペクトル画像からデータを視覚化して抽出する方法を説明します、しかし、プロセスは、MATLABなどCytoSpecなどのフリーソフトウェアなどの任意の代替ソフトウェアのために非常に似ている、または機器の開発者自身のソフトウェア。 IRデータに対して実行することができるいくつかの異なるスペクトル処理技術がある。
FT-IRイメージングは、対象のIR周波数に応じて異なるコントラストを与えることができ、組織のIR画像の導出を可能にする。加えて、IR画像において、全ての画素は、細胞型または疾患状態( 図1)の生化学的特性についての情報を与えることができる別の生体分子に対応する異なるピークが、全体のIRスペクトルを含む。ここでは、しかし、より高度な自動化された分類が上で実行することができるように、ベイズ分類、ランダムフォレスト、人工ニューラルネットワーク、および階層型クラスター分析などの追加のアルゴリズム3,43-50を 、使用して可能で、クラス間のスペクトルシグネチャを比較する方法を示しているデータ。教師付き分類手法は、細胞型又は疾患状態の、自動認識を可能にするために訓練することができる分類器の構築を可能にする。教師なし分類手法は、天然のdif発生を探すために使用することができ組織または生化学的な差異に起因する細胞内のferences。
FT-IRの計測は、透過モードまたは単一目的で収集目的と相まって、照明目的のいずれかを使用して、カセグレン目的を用いた撮像モードにIR不透明な開口を使用して、単一のポイント/マッピングモードでの測定から、過去数十年にわたって進化してきた点灯し、反射モードで収集した( 図2)の両方をその。最近、透過モードで収集目的は、収集されたIR画像4,5の空間分解能の実質的な増加をもたらすことが、回折限界IRイメージングを可能にするために高倍率及び開口数の対物レンズのために実行を切り替えることができることが実証された。我々は今、例えば、腎臓の糸球体の機能ユニットの細胞型および組織構造を識別できるように、組織のイメージングのための空間分解能の進歩は、社内で適合さ用いて、非常に重要であったFT-IRシステム( 図3)。
高精細FT-IRイメージングは、異常領域を特定し、異なる細胞型の間の生化学的差異を同定するために検査されるべき組織の詳細な画像を可能にする。肝臓組織コアでは、異形成および非異形成性肝硬変( 図4)の2つの別個の領域に分割する線維症の浸潤、肝細胞及び領域を可視化することが可能である。私たちは、肝疾患の困難なケースで使用するために自動化された診断ツールを作るに向けてこれを利用するために取り組んでいます。
重要なことは、増加した空間分解能は現在、私たちは組織学的変化は明らかである前に、化学的に病気によって修飾することができる特定の構造的特徴を分離できるようにすることができます。例えば、私たちは前に、そのようなボーマン嚢、メサンギウム、糸球体基底膜と筒状基底膜などの腎糸球体構造における生化学的変化を特定することに焦点を当てている病理学者により同定変化( 図5)を観察することができる。特に、我々は、現在の技術は、成功した介入の初期の十分な様式の変化を識別することができない移植患者における糖尿病性腎症および慢性拒絶反応の進行に関連する変化を同定することに興味を持っている。
肝臓コアから図1のFT-IR画像とスペクトル。(B)3286センチメートル-1及び(C)において同じコアの連続切片のIR吸光度の肝生検と画像から(A)H&E染色された核の写真2603異なる構造的特徴を強調-1、。標識された重要なピークを有する(D)組織の典型的なIRスペクトル。スケールバー=100μmである。fig1large.jpg「ターゲット= "_空白">この図の拡大版をご覧になるにはこちらをクリックしてください。
図2の光学模詳述FT-IR顕微鏡の動作モード(A)伝送モードでは、サンプルは、底部対物レンズを通して照射され、試料を通過する光は上部対物レンズによって収集される。 (B)、反射モードでは、トップの目的は、試料を照射し、反射光を収集するために、両方の役割を果たす。底の目的が使用されていない。 この図の拡大版をご覧になるにはこちらをクリックしてください。
differenの図3.比較2925センチメートル-1 NAと。(A)15X収集目的= 0.5(5.5 X 5.5ミクロンピクセルサイズ)での腎糸球体のFT-IR画像上のT顕微鏡対物レンズ。 NAと(B)36X集目的= 0.5(2.2×2.2μmの画素サイズ)。 (C)NA = 0.65(1.1×1.1μmのピクセルサイズ)と74X収集目的。スケールバー=50μmである。 この図の拡大版をご覧になるにはこちらをクリックしてください。
肝臓コアにおける線維症と肝細胞との間に、図4のスペクトルの違い。肝生検から(A)H&E染色されたコア。 (B)FT-IR(36X客観セットアップ)でスキャンシリアル部コアのイメージ。 (C)議員買上(A)に矢印で示した組織の領域から採取した肝細胞および線維のスペクトル、および(B)。スケールバー=100μmである。 この図の拡大版をご覧になるにはこちらをクリックしてください。
高精細FT-IRイメージングの使用を介して腎組織生検の特徴の図5の分化(A)素酸-シッフは、標識された抽出される特徴を有するセクションを染色した。 (B)同じ組織の連続切片のCH 2非対称伸縮領域(36X客観セットアップ)の高精細FT-IR画像。 (C)は 、化学的にはdifにできるようにする(B)におけるFT-IR画像を用いて抽出した(A)で標識された特長組織の4つの特徴をferentiate。スケールバー=50μmである。 この図の拡大版をご覧になるにはこちらをクリックしてください。
FT-IRは、病理診断の現在の水準の向上に重要な役割を持っている可能性のある、組織切片のラベルフリーの生化学的画像化のための新たなモダリティである。病状のための現在のゴールドスタンダードは、生検をホルマリンで固定し、パラフィン中に包埋される組織を必要とし、複数回区分し、複数の汚れで染色した。高度な訓練を受けた病理学者は、主観的に視覚的に診断を決定するために、組織構造や細胞形態を評価することがあります。ここでは、セクションの同じタイプから高解像度IR画像を収集し、細胞型および疾患状態の間の化学的相違を調べるために、計算のアプローチのいくつかを議論する方法を示す。
このプロトコル内での重要なステップは、組織は非常に慎重に集中していることを確認するためであるとことは、システムが十分に非常に高品質の分光データを保証するために較正される。システムのセットアップケアは特にcritiです CALは、高倍率の目的で作業する場合。トラブルシューティングを支援するために、以下のリストは、遭遇した潜在的な困難の一部をカバー。
問題:反射撮像低IR強度。ソリューション:反射コーティングスライドの間違った側にあってもよいようにIRスライドの向きを確認してください。
問題:ランサーControlでのLow信号/レッド警告サイン。ソリューション:LN2とクールな検出器。液体窒素はFPA検出器が機能するために必要とされ、定期的に補充されている必要があります。
問題:速度エラー/運動エラー。ソリューション:分光器をリセットし、振動を低減。振動は干渉計で動くミラーが邪魔されることになります。
問題:データ中の水蒸気スパイク。解決策:システム上のパージを増やし、空気からサンプルを保護する。
問題:無効なセンターバースト。解決策:再びセンターバースト検索。
e_content ">問題:透過率の低いフラックス違い、焦点を当てていても解決方法:IR光を試料上の点に集束されていないように底のコンデンサーを調整してこれが発生します。本稿では、伝送またはトランスフレクモードのいずれかで組織の高精細赤外線画像を取得する方法に焦点を当てている。 FT-IRイメージングの性質は、そのような基板の種類、固定法、試料の厚さ、スペクトル分解能、干渉計ミラーの速度など、これらのパラメータの影響、等のデータ収集を行うことができる多数の修飾が存在することである有し最近4,5,17,51広範で詳細に説明されて。
ATRモード10,24,26の撮像を含む、高解像度IRイメージングを可能にするためにナノスケール熱アプローチ52,53を用いた撮像システムに対してなされ得る多数の修飾がある。高解像度IRイメージングの主な制限は、TIのことであるssuesは、(通常は4μmの厚さ)を通過するように入念に準備し、IRのために十分な薄されなければならない。また、送信及び反射FT-IRイメージングは、水によるIRの吸光度に乾燥しているサンプルを必要とします。しかし、FT-IRイメージングは豊富で詳細な生化学的情報を導出しながら、組織の非常に迅速に画像の大きな領域ができるという点で、他の技術に対して重要な利点を有する。ラベルフリーの方法で生化学的情報を導出する他の同様の技術は、ラマン分光法、ただし、データ取得時に画像を取得するために非常に遅いが挙げられる。新しいラマンイメージング手法は、誘導ラマン散乱(SRS)とコヒーレントアンチストークスラマン散乱(CARS)を含む出現している。しかしながら、それらは、アクセス制限されたスペクトル範囲又は単一周波数イメージングを有する。
データ収集、空間分解能、および計算手法の利用可能性の速度の進歩は、FT-IRの虚部を製造するのに多大な価値があった病理学の新しいイメージングツールとしての翻訳のためのより実現可能なアプローチをる。空間分解能の最近の進歩に起因従来のFT-IRイメージングシステムを使用して解決可能でない重要な細胞型への組織病理学のために特に重要であった。レディらによる最近の論文。 FT-IRイメージング·システム5の最適な空間分解能を得るために理想的なシステムをモデル化する方法を示した。本論文で提示腎組織の例では、糸球体の構造( 図3と図5)からの生化学的情報を抽出するために、より高い空間分解能の重要性を示している。将来的には、量子カスケードレーザにおける新たな進歩として非常に明るいIR光源54-57、3Dスペクトルイメージング58、および52,53,59,60が持つ研究のエキサイティングな新しい道を保持するナノスケールのIR技術の分野におけるブレークスルー組織イメージングの将来に大きな意味。
我々は肝臓と腎臓病におけるアプリケーションの例を提示している。シカゴのイリノイ大学の病理学部におけるスペクトル病理研究室は、病気の診断や患者の転帰の改善された予測の改善に向けたIRイメージング技術の翻訳に焦点を当てている。 FT-IRイメージングは、定量的かつ客観的な情報が必要な病理実際には電流制限の一部を克服することができる。特に、今後は現在の技術では十分な診断感度を提供するか、または限られた情報を提供することができ、現在の病理学の実践の領域を同定することに焦点を当てている。明らかに必要と病理の現在の実務を改善し、高精細なFT-IRイメージングを用いて達成可能で患者の疾患状態について病理学者、より多くの情報を与えるに向かって存在する。
The authors have nothing to disclose.
We would like to acknowledge the Department of Pathology at the University of Illinois at Chicago for financial support. Histology and visible imaging services were provided by the Research Resources Center - Research Histology and Tissue Imaging Core at the University of Illinois at Chicago established with the support of the Vice Chancellor of Research, in particular we would like to thank Ryan Deaton and Andy Hall for their expertise. We would also like to thank Agilent Technologies, in particular Frank Weston for support and loaning of additional IR lens.
Name | Company | Catalog Number | Comments |
Cary 600 Series FT-IR system | Agilent | Multiple configurations | Alternate FT-IR imaging systems exist |
Adjustable ReflX Objective 74X/0.65 NA IR | Edmund Optics | 66-592 | |
Adjustable ReflX Objective 36X/0.5 NA IR | Edmund Optics | 66-586 | |
MirrIR slide | Kevley Technologies | CFR | For FT-IR reflection-mode measurements |
Barium Fluoride slides | International Crystal Laboratories | Multiple sizes | For FT-IR transmission-mode measurements |
Calcium Fluoride slides | International Crystal Laboratories | Multiple sizes | For FT-IR transmission-mode measurements |
Dry Nitrogen/Dry Air gas | Multiple gas suppliers | Multiple sizes | |
Hexane | Sigma Aldrich | Multiple sizes | For deparafinizing tissue |
Liquid Nitrogen | Multiple cryogenic liquid suppliers | Multiple sizes | |
ENVI-IDL software | Exelis-Vis | Other software packages available | |
Whole slide Imager | Scanscope (Aperio) or Nanozoomer (Hamamatsu) | To image stained slides |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved