このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
Transporters in cell membranes allow differential segregation of ions across cell membranes or cell layers and play crucial roles during tissue physiology, repair and pathology. We describe the ion-selective self-referencing microelectrode that allows the measurement of specific ion fluxes at single cells and tissues in vivo.
動物、植物、単一細胞からの細胞は、外部から細胞質を分離し、細胞膜と呼ばれるバリアによって囲まれています。例えば、上皮細胞層としても外側または多細胞生物の異なる区画の内部を分離するバリアを形成します。これらの障害の重要な特徴は、細胞膜または細胞膜を横切るイオンの微分分布です。二つの特性は、この配布を許可する:1)膜および上皮は、特定のイオンを選択的に透過性を表示します。 2)イオンは、細胞膜および細胞膜を横切るポンプを介して輸送されます。これらの特性は、組織の生理機能の維持に重要な役割を果たし、修理の際に、損傷後の手がかりを信号として機能し、または病理学的条件の下で。イオン選択自己参照微小電極は、単一の細胞および組織レベルでのカルシウム、カリウムやナトリウムなどのイオンの特定のフラックスの測定を可能にします。微小電極は、イオノフォアのカクテルが含まれています特定のイオンを選択的に透過。内部充填溶液は、目的のイオンの設定濃度が含まれています。微小電極の電位はイオンの外濃度によって決定されます。イオン濃度が変化するように、微小電極の電位がイオン活性の対数の関数として変化します。 (これはイオン束に濃度勾配で、すなわち )イオンのソースまたはシンクの近くに前後に移動すると微小電極電位はイオンフラックス/勾配に比例した振幅で変動します。増幅器は、微小信号を増幅し、出力は、コンピュータに記録されます。イオン束は、その後、特定のイオン移動度として、電極電位変動、微小電極の偏位、および他のパラメータを使用して拡散フィックの法則によって計算することができます。本稿では、イオン選択自己参照微小電極のANを用いて細胞外のイオンフラックスを測定するための方法論を詳細に説明しますいくつかの代表的な結果を提示するdは。
全ての動物細胞は、外部環境から細胞質を分離する脂質二重膜で囲まれています。セルは、イオン1の能動輸送により、内部の電気膜電位、負を維持します。膜電位は、細胞は、膜2に、様々な分子デバイスを動作させるために利用することができる保存されたエネルギー源です。ニューロンおよび他の興奮性細胞は、大きな膜電位を有します。ナトリウムチャネルの迅速な開口部は膜電位(脱分極)の崩壊と神経2の長さ方向に沿って搬送される活動電位を生成します。別にこれらの急速な電気的変化から、多くの組織や器官が発生し、重大な長期的な電位を維持します。例えば、皮膚、角膜上皮が発生し、イオンの方向励起(主にナトリウムと塩化物)3によって経上皮電位および細胞外の電流を維持します。
10トン">内因性細胞外電流の測定は微小電極システム7-10は、細胞膜および上皮細胞層の電気的パラメータの測定を可能に用いて振動プローブ4-6および膜または経上皮電位の測定値を使用している間、彼らはない与えます関与するイオン種の指標。選択的イオノフォアと微小電極は、溶液中の特定のイオン濃度を測定することができます。イオン勾配またはフラックスは異なる位置に2つ以上の電極を用いて測定することができます。しかし、各プローブの固有の電圧ドリフトは、不正確な測定または存在しなかった勾配であっても検出を引き起こし、異なるであろう。それは2点間の低周波数で移動することにより、「自己参照」モードで使用される単一の電極は、この問題を解決します。ここで、イオンフラックスは、( 図3B参照 )は、比較的ゆっくりと安定した信号ドリフトの背景を見ることができます。
イオン感受性測定システムは、組織または単一細胞に近いイオンの小さな細胞外フラックスを検出するために、イオン選択自己参照微小電極を使用しています。システムは、微小電極からの信号を処理し、マイクロステッピングモータとドライバは、微小電極の動きを制御するための増幅器で構成されています。回路を閉じるイオン選択微小電極および参照電極をヘッドステージ前置増幅器( 図1A)を介して増幅器に接続されています。コンピュータソフトウェアは、微小運動(周波数、距離)のパラメータを決定し、また、増幅器の出力を記録します。ステッピングモータは、三次元マイクロポジショナーを介して微小電極の移動を制御します。イオン選択性微小電極を振動、低周波は、まず、特定のカルシウム流11を測定するために1990年に開発されました。同様に、カルシウムなど、商業的にアクセス可能なイオノフォアカクテルは今MICRを作るために利用可能ですナトリウム、塩化物、カリウム、水素、マグネシウム、硝酸、アンモニウム、フッ化リチウム、水銀に敏感oelectrodes。
基本的には、自己参照イオン選択微小電極技術は、電圧計で測定することができる電位に溶液中に溶解し、特定のイオンの活性を変換します。イオノフォアカクテルは、イオン交換特性を有する非混和性液体(有機親油性)相です。イオノフォアは、選択的可逆的に(結合する)特定のイオンと錯体を形成し、微小電極(電解液)に含まれる水溶液と微小電極が浸漬させた水溶液( 図1D)との間でそれらを転送します。このイオンの移動は、電気化学的平衡をもたらし、微小電極と参照電極との間の電位の変動を電圧計により測定されます。電圧は、ネルンストeによる特定のイオン活性の対数に比例していますイオン濃度( 図2AおよびB)の計算を可能にするquation。
現在、いくつかのシステムでは、同様の概念や原理を用いてイオン流の測定を可能にします。例えば、走査型イオン選択電極法(SIET)12,13またはニューマンとShabala 14-16によって開発された微小電極のイオンフラックスの推定(MIFE)技術は市販されており、広く特定のイオンを決定するために、研究コミュニティによって使用されます動物、植物および単一生細胞モデルの多様にわたって細胞膜および組織で生じる磁束。マウスの骨におけるイオン選択性微小植物の根17を横切って、水素、カリウムおよびカルシウムフラックスを測定するために使用されている、塩化フラックスラット大脳動脈18と花粉管19、水素流量スケート網膜細胞20、カルシウムフラックス21、様々なイオン菌糸22であり、rでフラックス単一細胞の創傷中に角膜23、および最終的にカルシウム流で12,24治癒 。また、イオン選択自己参照微小電極25の詳細については、以下のレビューを参照してください。
次の記事では、準備し、単一細胞レベルでのイオン選択自己参照微小電極技術を用いて、内因性の細胞外イオンフラックスの測定を実行する方法を詳細に説明しています。
1.イオン選択自己参照微小電極作製
2.イオン選択自己参照微小電極のキャリブレーション
イオン選択微小電極法の3検証
商工会議所の測定4.準備
注:実験の前に、サンプルを測定することが考慮し、サンプルがどのように実装され、微小電極の測定のために固定化します。
5.イオンフラックス測定
6.統計分析とデータ表示
我々は以前、カルシウム流入は、単一のセルが24を負傷した後に表示されることが示されています。したがって、我々は、他のイオン束は、単一の細胞損傷の際に発生するかどうか尋ねました。我々は、Xを使用しました卵母細胞をアフリカツメガエル 、単一のセルのための十分に確立されたモデルは30〜34と電気生理学的記録24,35-39創傷治癒します
in vivoでの細胞外イオンフラックスの測定に成功するために最も重要な手順は次のとおりです。ノイズの低減、イオン選択微小電極と参照電極の正確な製造、およびサンプルと両電極の配置。
ノイズを最小にするために、記録システムは、好ましくは、接地された金属張り(防振)テーブルでアース(接地)ファラデーケージにする必要があります。また、顕微鏡...
The authors declare that they have no competing financial interests.
This work was supported by National Science Foundation grant MCB-0951199, and in part by the NIH grant EY01910, California Institute of Regenerative Medicine grants RB1-01417 and by the Fundação para a Ciência e Tecnologia (FCT) grant SFRH/BD/87256/2012.
Name | Company | Catalog Number | Comments |
IonAmp | BioCurrents Research Center, Woods Hole, MA, USA | none | amplifier created by the BioCurrents Research Center, Woods Hole, MA, USA; Similar system can be purchased from “XBL function matters” (http://www.xuyue.org/) or from “YoungerUSA” (http://www.youngerusa.com/) or from Applicable Electronics(http://www.applicableelectronics.com/) |
IonAmp32 | BioCurrents Research Center, Woods Hole, MA, USA | none | software created by the BioCurrents Research Center, Woods Hole, MA, USA; Similar system can be purchased from “XBL function matters” (http://www.xuyue.org/) or from “YoungerUSA” (http://www.youngerusa.com/) or from Applicable Electronics(http://www.applicableelectronics.com/) |
Headstage pre-amplifier | BioCurrents Research Center, Woods Hole, MA, USA | INA116 | BSR Voltage Follower INA116, designed by the BioCurrents Research Center, Woods Hole, MA, USA; Similar system can be purchased from “XBL function matters” (http://www.xuyue.org/) or from “YoungerUSA” (http://www.youngerusa.com/) or from Applicable Electronics(http://www.applicableelectronics.com/) |
MicroStep Driver | BioCurrents Research Center, Woods Hole, MA, USA | none | three MicroStep drivers are required for X, Y and Z-positioning; created by the BioCurrents Research Center, Woods Hole, MA, USA; Similar system can be purchased from “XBL function matters” (http://www.xuyue.org/) or from “YoungerUSA” (http://www.youngerusa.com/) or from Applicable Electronics(http://www.applicableelectronics.com/) |
Manual micropositioner | World Precision Instruments | Model KITE-R | Similar system can be purchased from Applicable Electronics(http://www.applicableelectronics.com/) |
Magnetic stand | World Precision Instruments | Model M10 | Similar system can be purchased from Applicable Electronics(http://www.applicableelectronics.com/) |
Vibration isolation table | Newport Inc. | Model VW-3036-OPT-023040 | Similar system can be purchased from Applicable Electronics(http://www.applicableelectronics.com/) |
Part of three dimentional micropositioner: angle bracket, 90°, slotted faces | Newport Inc. | Model 360-90 | Assemblage of the three dimantionnal micropositionner requires also Three electric rotary motors for X, Y, Z control, MPH-1 mounting arm with MCA-2 adjustable-angle post and Various Newport connectors and screws to bolt onto vibration table |
Part of three dimentional micropositioner: Peg-Joining Dovetail Stage 0.5 inch X Travel | Newport Inc. | 460PD-X | none |
Part of three dimentional micropositioner: Quick-Mount Linear Stage, 0.5 inch XY Travel | Newport Inc. | 460A-XY | none |
Kwik-Fil thin walled borosilicate glass capillaries without filament | World Precision Instruments | TW150-4 | none |
Electrode puller | Narishige | PC-10 | none |
Metal rack | Made in-house | none | Metal electrode holder made in-house by drilling 2 mm wide holes half centimeter spaced in a 10cm by 15cm rectangular base of steel |
Oven | QL | Model 10 Lab Oven | none |
Silanization solution I | Sigma-Aldrich | 85126 | Hazardous, handle as recommended by provider |
Glass Petri dish; Pyrex | Fisher Scientific | 316060 | none |
Electrode/micropipette storage jar | World Precision Instruments | E215 | none |
Glass dessicator | Fisher Scientific | 08-595E | Contains Drierite dessicant (W.A. Hammond Drierite Co. Ltd, Xenia, OH, USA). Place petroleum jelly on the seal to make it airtight. |
Plastic Pasteur pipette | Fisher Scientific | 11597722 | none |
Bunsen burner | Fisher Scientific | S97329 | none |
Microscope slide | Sigma-Aldrich | S8902 | none |
Straight microelectrode holder | Warner Instruments | QSW-A15P | with a gold 1 mm male connector and Ag/AgCl wire |
Straight microelectrode holder | World Precision Instruments | MEH3S | with a AgCl(Ag+)pellet inside and a gold 2 mm male connector |
6 cm Petri dish | VWR | 60872-306 | none |
Nitex mesh | Dynamic Aqua-Supply Ltd. | NTX750 | none |
Glue; Loctite epoxy | VWR | 500043-451 | Mix glue and hardener in equal parts in a plastic weighing boat and mix thoroughly. Sets quickly but leave at RT for 24 h for full curing |
Deionized water | Sigma-Aldrich | 99053 | none |
Sodium Chloride | Sigma-Aldrich | S7653 | none |
Potassium Chloride | Sigma-Aldrich | P9333 | none |
Calcium Chloride | Sigma-Aldrich | C1016 | none |
Magnesium Chloride | Sigma-Aldrich | M8266 | none |
Hepes | Sigma-Aldrich | H3375 | none |
Sodium Hydroxyde | Sigma-Aldrich | S8045 | none |
Potassium Acetate | Sigma-Aldrich | P1190 | none |
Agarose | Sigma-Aldrich | A9539 | none |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved