このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
Focal demyelination is induced in the optic nerve using lysolecithin microinjection. Visual evoked potentials are recorded via skull electrodes implanted over the visual cortex to examine the signal conduction along the visual pathway in vivo. This protocol details the surgical procedures underlying electrode implantation and optic nerve microinjection.
The visual evoked potential (VEP) recording is widely used in clinical practice to assess the severity of optic neuritis in its acute phase, and to monitor the disease course in the follow-up period. Changes in the VEP parameters closely correlate with pathological damage in the optic nerve. This protocol provides a detailed description about the rodent model of optic nerve microinjection, in which a partial demyelination lesion is produced in the optic nerve. VEP recording techniques are also discussed. Using skull implanted electrodes, we are able to acquire reproducible intra-session and between-session VEP traces. VEPs can be recorded on individual animals over a period of time to assess the functional changes in the optic nerve longitudinally. The optic nerve demyelination model, in conjunction with the VEP recording protocol, provides a tool to investigate the disease processes associated with demyelination and remyelination, and can potentially be employed to evaluate the effects of new remyelinating drugs or neuroprotective therapies.
Optic neuritis is one of the most common form of optic neuropathy, causing complete or partial loss of vision1. Histologically, it is featured by inflammatory demyelination, retinal ganglion cell axonal loss and varying degrees of remyelination in the optic nerve2. Optic neuritis is usually the manifest onset of multiple sclerosis. The visual evoked potential (VEP) is a non-invasive tool for investigating the function of the visual system. It reflects the post-retinal function from the retina to the primary visual cortex and is affected in many optic nerve disease conditions3. The VEP has been predominantly used in optic neuritis patients to assess the integrity of the visual pathway4.
The latency of VEP, which reflects the velocity of signal conduction along the visual pathway, is considered to be an accurate measurement of the level of myelin associated changes in the optic nerve5; while the amplitude of VEP is believed to be closely correlated with axonal damage of the retinal ganglion cells (RGC)6. This hypothesis has been fairly well established using the rat model of lysolecithin-induced optic nerve demyelination5.
Here, we explicate a comprehensive protocol of optic nerve microinjection technique in rodents, which can minimise the surgical manipulation-related damage to the nerve per se as well as to the adjacent tissues such as extraocular muscles and blood vessels. Also, the skull electrode implantation surgery has been described for VEP recording in animals7. The VEP recordings can be repeatedly carried out on animals over a period of time to assess demyelination/remyelination related changes as well as impact on axonal integrity in the optic nerve.
倫理声明:動物に関わるすべての手順は、ケアと科学的な目的のための動物の使用と眼科と視覚研究における動物の使用に関するARVOステートメントの指針の実践のためのオーストラリアの規範に従って行われ、によって承認されましたマッコーリー大学の動物倫理委員会。
1. VEP電極移植
2.視神経インジェクション
3. VEPの記録
4.組織調製および組織学
再現内会合VEPトレースは、 図1に示されており、N1潜時の有意な遅延は、視神経の注射後に見られます。脱髄の部分視神経病変は、ルクソールファーストブルー染色5を用いて、組織切片上で観察することができる。 図2は、視神経の中心部にある小さな焦点脱髄病変を持つ代表的な断面を示しています。断面は、病変の総体積を表すものではありませんので注...
The optic nerve is very susceptible to mechanical damage. Optic nerve crush injury over a duration of 1 s can lead to about 75% loss of RGC over a period of 2 weeks10. Therefore, extreme care is required while performing the surgical procedures. According to the authors’ experience, it is much better to adapt a blunt dissection approach to expose and make way through the tissues around the optic nerve along the orientation of the nerve, rather than penetrating in a perpendicular orientation to the optic ...
None of the authors have competing interests or conflicting interests.
この研究は、オーストラリアの眼科研究所(ORIA)によってサポートされていました。私たちは当初、VEP記録技術を開発するために私たちを助けるため、教授Algis Vingrys博士バンブイ、メルボルン大学に感謝します。
Name | Company | Catalog Number | Comments |
Ketamine 100 mg/ml (Ketamil) | Troy Laboratories | AC 116 | |
Medetomidine 1 mg/ml (Domitor) | Pfizer | sc-204073 | |
Tropicamide 1.0% (Mydriacyl) | Alcon | sc-202371 | |
Homoeothermic blanket system | Harvard Apparatus | NC9203819 | |
Impedance meter | Grass | F-EZM5 | |
Screw electrodes | Micro Fasteners | M1.0×3mm Csk Slot M/T 304 S/S | |
Subdermal needle electrodes | Grass | F-E3M-72 | |
Rapid Repair | DeguDent GmbH | ||
Light-emitting diode | Nichia | NSPG300A | |
Bioamplifier | CWE, Inc. | BMA-400 | |
CED system | Cambridge Electronic Design, Ltd. | Power1401 | |
Hamilton syringe | Hamilton | 87930 | |
Lysolecithin | Sigma | L4129 | |
Evan’s blue | Sigma | E2129 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved