Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Focal demyelination is induced in the optic nerve using lysolecithin microinjection. Visual evoked potentials are recorded via skull electrodes implanted over the visual cortex to examine the signal conduction along the visual pathway in vivo. This protocol details the surgical procedures underlying electrode implantation and optic nerve microinjection.
The visual evoked potential (VEP) recording is widely used in clinical practice to assess the severity of optic neuritis in its acute phase, and to monitor the disease course in the follow-up period. Changes in the VEP parameters closely correlate with pathological damage in the optic nerve. This protocol provides a detailed description about the rodent model of optic nerve microinjection, in which a partial demyelination lesion is produced in the optic nerve. VEP recording techniques are also discussed. Using skull implanted electrodes, we are able to acquire reproducible intra-session and between-session VEP traces. VEPs can be recorded on individual animals over a period of time to assess the functional changes in the optic nerve longitudinally. The optic nerve demyelination model, in conjunction with the VEP recording protocol, provides a tool to investigate the disease processes associated with demyelination and remyelination, and can potentially be employed to evaluate the effects of new remyelinating drugs or neuroprotective therapies.
Optic neuritis is one of the most common form of optic neuropathy, causing complete or partial loss of vision1. Histologically, it is featured by inflammatory demyelination, retinal ganglion cell axonal loss and varying degrees of remyelination in the optic nerve2. Optic neuritis is usually the manifest onset of multiple sclerosis. The visual evoked potential (VEP) is a non-invasive tool for investigating the function of the visual system. It reflects the post-retinal function from the retina to the primary visual cortex and is affected in many optic nerve disease conditions3. The VEP has been predominantly used in optic neuritis patients to assess the integrity of the visual pathway4.
The latency of VEP, which reflects the velocity of signal conduction along the visual pathway, is considered to be an accurate measurement of the level of myelin associated changes in the optic nerve5; while the amplitude of VEP is believed to be closely correlated with axonal damage of the retinal ganglion cells (RGC)6. This hypothesis has been fairly well established using the rat model of lysolecithin-induced optic nerve demyelination5.
Here, we explicate a comprehensive protocol of optic nerve microinjection technique in rodents, which can minimise the surgical manipulation-related damage to the nerve per se as well as to the adjacent tissues such as extraocular muscles and blood vessels. Also, the skull electrode implantation surgery has been described for VEP recording in animals7. The VEP recordings can be repeatedly carried out on animals over a period of time to assess demyelination/remyelination related changes as well as impact on axonal integrity in the optic nerve.
Déclaration éthique: Toutes les procédures impliquant des animaux ont été effectuées en conformité avec le Code australien de pratiques pour le soin et l'utilisation des animaux à des fins scientifiques et les lignes directrices de la Déclaration ARVO pour l'utilisation d'animaux dans ophtalmique et Vision Research, et ont été approuvés par le Comité d'éthique animale de l'Université de Macquarie.
1. VEP implantation d'électrodes
2. Optic Nerve Injection
3. VEP Enregistrement
4. Préparation des tissus et histologie
Traces de VEP intrasessions reproductibles sont présentés dans la figure 1 et un retard important dans la latence N1 peuvent être observés après l'injection du nerf optique. Lésions du nerf optique partielles de démyélinisation peuvent être observées sur des coupes histologiques utilisant Luxol coloration au bleu rapide 5. La figure 2 montre une section représentative avec une petite lésion démyélinisée focal dans le centre du nerf optique. Notez que sectio...
The optic nerve is very susceptible to mechanical damage. Optic nerve crush injury over a duration of 1 s can lead to about 75% loss of RGC over a period of 2 weeks10. Therefore, extreme care is required while performing the surgical procedures. According to the authors’ experience, it is much better to adapt a blunt dissection approach to expose and make way through the tissues around the optic nerve along the orientation of the nerve, rather than penetrating in a perpendicular orientation to the optic ...
None of the authors have competing interests or conflicting interests.
Cette étude a été soutenue par l'Institut de recherche en ophtalmologie de l'Australie (ORIA). Nous remercions Prof. Algis Vingrys et le Dr Bang Bui, Université de Melbourne, pour d'abord nous aider à développer la technique d'enregistrement VEP.
Name | Company | Catalog Number | Comments |
Ketamine 100 mg/ml (Ketamil) | Troy Laboratories | AC 116 | |
Medetomidine 1 mg/ml (Domitor) | Pfizer | sc-204073 | |
Tropicamide 1.0% (Mydriacyl) | Alcon | sc-202371 | |
Homoeothermic blanket system | Harvard Apparatus | NC9203819 | |
Impedance meter | Grass | F-EZM5 | |
Screw electrodes | Micro Fasteners | M1.0×3mm Csk Slot M/T 304 S/S | |
Subdermal needle electrodes | Grass | F-E3M-72 | |
Rapid Repair | DeguDent GmbH | ||
Light-emitting diode | Nichia | NSPG300A | |
Bioamplifier | CWE, Inc. | BMA-400 | |
CED system | Cambridge Electronic Design, Ltd. | Power1401 | |
Hamilton syringe | Hamilton | 87930 | |
Lysolecithin | Sigma | L4129 | |
Evan’s blue | Sigma | E2129 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon