JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

The Tandem Affinity Purification (TAP) method has been used extensively to isolate native complexes from cellular extract, primarily eukaryotic, for proteomics. Here, we present a TAP method protocol optimized for purification of native complexes for structural studies.

要約

アフィニティー精製のアプローチはプロテオミクス特性評価用のネイティブ複合体を単離することに成功しています。構造的不均一性との複合体の組成不均一性の程度は、通常、このような研究を行うの進展が妨げられることはありません。これとは対照的に、構造的な特徴付けのために意図された複合体は、両方の組成と構造的に均質なだけでなく、プロテオミクスのために必要とされるよりも高い濃度である状態で、精製されるべきです。近年、大規模な高分子複合体の構造を決意する電子顕微鏡の応用において重要な進歩がありました。これは、電子顕微鏡による構造決意するのに十分な質と量のネイティブの複合体を精製するためのアプローチへの関心を高めています。タンデムアフィニティー精製(TAP)メソッドは18サブユニットを抽出し、精製するために最適化されている、〜出芽酵母から0.8 MDAリボアセンブリ( サッカロマイセス・セレビシエ)

概要

多くの主要な細胞プロセスは、大きなタンパク質およびタンパク質-RNA複合体1によって行われます。このような複合体の生物物理学的および構造的な研究を行うに重大なボトルネックは、適切な品質( すなわち 、均一性)の、適切な濃度でそれらを得ることです。天然の供給源から複合体を分離することにより、サブユニットの関連する転写後および/または翻訳後修飾を保持し、適切な複雑なアセンブリを保証を含め、多くの利点があります。しかし、大規模な細胞複合体は、低コピー数で、多くの場合、細胞内に存在していると精製は非常に効率的で、複雑な整合性が維持されていることを確認するために近くの生理的条件下で発生する必要があります。真核生物源から複合体を精製することは特に困難であり、財政的に法外することができます。したがって、効率的でかつ均一な複合体をもたらす戦略または方法が非常に望まれています。

されている戦略彼らの初期の特性のために、真核細胞からの天然の複合体を精製することに成功は、タンデムアフィニティー精製(TAP)法2,3です。 TAPの方法は、最初因子(複数可)2相互作用との複合体で出芽酵母(S.セレビシエ)から天然のタンパク質を精製するために考案されました。 TAP法は、同じタンパク質をコードする遺伝子配列をタンデムに融合した各タグを二つのタグを利用しました。タイトかつ選択的な生理学的溶液条件の近くに維持する要望と親和性樹脂に結合するための必要性のバランスを取るように、タグを選択しました。このバランスは、精製後の特徴付けのための因子(単数または複数)の相互作用でタグ付けされたタンパク質の安定な相互作用(複数可)を維持するのに役立ちます。ゲノムに組み込まTAPタグは、タンパク質をコードする遺伝子の末端(C末端)に配置され、プロテインAに続くカルモジュリン結合ペプチド(CBP)のためのシーケンスをコードで構成された - タグを付けたにわずか20キロダルトンの追加タンパク質。 CBPは2、短いです6アミノ酸、および10 -9 M 4のオーダーのK Dとカルシウムの存在下で〜17 kDaのタンパク質カルモジュリン(CAM)によって認識。プロテインAタグは、反復間の短いリンカーを有する58残基二反復からなる、大きくなります。各58アミノ酸反復は、K D〜10 -8 M 5で免疫グロブリンG(IgG)によって認識されます。これら二つのタグの間にTEVプロテアーゼ、タバコエッチウイルス6,7からエンドペプチダーゼの認識部位を組み込みました。 TAPタンパク質をタグ付け方法の第1の親和性ステップにおいて、 図1に示すようタグ付けされたタンパク質をTEVプロテアーゼ、特にサイト間切断を添加すると、カラム切断にすることによって溶出し、プロテインAを介してIgGを樹脂に結合されています二つのタグ。 IgGおよびプロテインAの相互作用が非常に強く、唯一の適切ソリューションの変性条件下で摂動することができますので、これは必要なステップです。 Prを欠きますタグotein、タンパク質は、カルシウムの存在下カム樹脂に結合され、金属イオンキレート剤EGTA(エチレングリコール四酢酸)( 図1)を添加して、この樹脂から溶出しました。

すぐTAP法を導入した後、それは、Sで複雑 ​​な相互作用の「マップ」を生成するために、大規模な研究で使用しましたセレビシエ 8。重要なのは、この努力の結果として全体の酵母-TAPタグ付きオープンリーディングフレーム(ORF)ライブラリだけでなく、個々のTAPはのORF 9は商業的供給源から入手可能であるタグ付けされました。このように、1は、任意の酵母複合体のためのタグ付きタンパク質と任意の酵母株を取得することができます。 TAP法も含め、TAPタグの修正または変形に拍車をかけた。他の真核生物からの複合体の精製、ならびに細菌細胞10,11のためのその使用。プロテインAとCBPが異なるタンパク質12上に配置され、「スプリットタグ」のデザイン;そして、TA例えば、Ca 2+またはEGTA 13複合体の感度と、研究者のニーズに適応するようにGSは、変更しました。

器具類および方法論の両方における最近の進歩は、高分子複合体14の原子解像度画像の近くに高につながった構造決意、ための電子顕微鏡(EM)の適用における重要な進歩をもたらしてきました。 EMによる複合体の得られる分解能は、しかし、研究中の複合体の品質次第で残っています。本研究では、Sから精製するために、TAPタグのアプローチを利用していますセレビシエ U1 snRNP、スプライソソーム15,16の一部である18サブユニット(〜0.8 MDA)低コピー数のリボ核タンパク質複合体。ステップ数は、均一で十分な濃度であるように、この複合体を精製するためにとられています。精製の様々な段階で遭遇する潜在的な問題が記載されており、戦略はCHALLを克服するためにとらengesを強調しました。慎重に精製の手順を評価し、最適化することにより、精製されたU1 snRNPは、品質のとネガティブ染色および電子クライオ顕微鏡(クライオEM)の研究に適した量です。構造研究のために、天然の複合体の精製のための最適化されたTAP法プロトコルは、本明細書に記載されています。

プロトコル

注:以下のプロトコルは、細胞培養の4 L、細胞の約40グラム湿重量から複合体を精製するために考案されました。調製したら、すべてのバッファは、4℃で保存し、それらの調製の月以内に使用すべきです。還元剤およびプロテアーゼ阻害剤は、使用直前に緩衝液に添加されます。

タンデムアフィニティー精製のための全細胞抽出物の調製

  1. S.の成長セレビシエ細胞
    1. ストリーク希望TAPはS.をタグ付けました酵母ペプトンデキストロース(YPD)プレート上に貯蔵(-80℃)からセレビシエ株。酵母細胞は、白とふわふわ表示されるまで、5日間(30℃)で - 3インキュベートします。
    2. 50ミリリットルの円錐形ポリプロピレン遠心チューブに10ミリリットルYPD培地にプレートからの新鮮な細胞の約2ミリメートル2の連勝を接種します。毎分180回転(rpm)で一晩(C°30メートル)でチューブを振ります。
    3. オーバーの2ミリリットルを接種します2 Lの三角または三角フラスコ中のYPD培地1リットル当たりの夜の文化。毎分180回転(30℃)で振ります。 2に後期対数期、1.8のOD 600まで、600 nmの(OD 600)の光学密度で細胞増殖を監視し、一般的に20から24時間。
  2. 収穫S.セレビシエ細胞
    1. 15分(4℃)のために5400×gで遠心分離によって細胞を回収します。
    2. 迅速上清をデカントし、4℃または氷上で細胞を維持します。
    3. 溶解緩衝液冷却2mLで細胞ペレットの各リットルをサスペンド(10mMのトリス-HCl、pH8.0の、300mMのNaCl、10mMの塩化カリウム、0.2mMのEDTA、pH8.0の、5 mMイミダゾール、pHを8.0; 10%グリセロール; 0.1% V / V NP-40)。旋回により細胞をサスペンドおよび/または10ミリリットル血清学的ピペットを用いてピペッティングを繰り返します。
      注:これは、複雑な品質と後の精製分析に関連したNP-40の重要性は、以下に説明します。
    4. 空の50mlコニカルポリプロピレン遠心管K内に細胞懸濁液を転送します氷上でEPT。冷やし溶解バッファーの追加の2ミリリットルで、各遠心分離ボトルを洗浄し、50 mlチューブに細胞懸濁液に追加します。
    5. チューブを計量し、空のチューブの重量だけでなく、追加された溶解バッファーを減算することにより、細胞ペレットの湿重量を決定します。
      注:1.8のOD 600を有する細胞培養物のリットルは約10gです。
    6. 50ミリリットルの円錐形ポリプロピレン遠心管に液体窒素浴を作成します。 5ミリリットルの注射器の中に懸濁した細胞を描画します。シリンジに16 G針を接続します。細胞を生成するために、シリンジ/針を通すことにより、細胞懸濁液を凍結する」液滴を。」凍結の割合は、約1分/ mlであるべきです。
    7. 凍結細胞液滴を保存(-80℃)や溶解に進みます。
  3. 細胞を溶解し、溶解物の明確化
    1. 溶解コーヒーグラインダーを用いて酵母細胞。 Cを振とうしながら25秒、バーストを研削と溶解細胞8〜9倍offeeグラインダー。使用前に、液体窒素でコーヒーグラインダーを事前に冷やします。研削の各2ラウンドは、グラインダーに液体窒素の浅い層を追加し、それが蒸発することを可能にします。
    2. 凝集から細胞を維持するために、必要に応じて液体窒素冷却したスパチュラで攪拌します。細胞凝集をもたらすことができる細胞の融解を防ぐために注意してください。細胞は溶解後微細な白色粉末として表示されます。酵母培養物(~40 g)を4 Lから最大細胞ペレットを一度に粉砕することができます。
      注:溶解の方法に関する考察を以下に説明します。
    3. 血球計数器または別の細胞計数法を用いて、細胞溶解の程度を評価します。溶解の前に(1);:適切な分析を提供するには、次のサンプルを取ります(2)溶解の4ラウンド後。 (3)溶解を以下に示します。これらのサンプルを確認するには、1.5mlチューブ内の液体窒素冷却したスパチュラと場所で細胞の少量を取ります。
    4. 細胞の細胞を解凍した後、ピペットを5μl495μlの水と混合します。 40場合 - 細胞の60%溶解が観察され、プロトコルの次のステップに進みます。
      注:溶解の長期間の効果についての観察を以下に説明します。
    5. いったん十分な溶解が観察され、店舗溶解細胞(-80°C)、または次のステップに進んでください。
    6. 1mMのフェニルメタンスルホニルフルオリド(PMSF)、1mMジチオスレイトール(DTT)、およびプロテアーゼ阻害剤の市販の混合物を含む15 mlの溶解バッファーでそれぞれ(50ml×2回)の円錐形ポリプロピレン製遠心管を準備します。
      注意:重​​要なタンパク質分解が観察される場合には、プロテアーゼ欠損株の使用を検討してください。
    7. 準備された50ミリリットルチューブに凍結された溶解された細胞粉末をすくうために液体窒素冷却されたへらを使用してください。還元剤およびプロテアーゼ阻害剤(複数可)の両方を含む、溶解緩衝液に漸増固体電池粉末を追加/。
    8. /解凍細胞を溶解するだけでなく、形成から気泡を防ぐためにするように、室温で穏やかに50ミリリットルチューブを回転させます。 A細胞粉末/固体が溶解するが、追加のセル固体/粉末を追加しますね。
    9. それぞれが細胞の約20グラムを持っているか、すべてのセルが追加されるまで2 50mlチューブのそれぞれを埋めます。 50mlチューブで観察されない凍結細胞塊がなくなるまで解凍/溶解を続けます。これは、約50分を取る必要があります。
    10. 25,000×gで(4℃)で20分間中断し、細胞溶解物を遠心。十分に溶解された細胞は、黒色沈殿物の少量を示すことができます。
    11. 超遠心管(使用26.3ミリリットルチューブ)ポリカーボネート、各フルチューブに10μlの200mMのPMSFを追加するために上清の50ミリリットルを転送します。
    12. 10万XG(4℃)で1時間遠心分離します。 4層下から上に、目に見えるようになります。(1)ハードクリアペレット、リボソーム複合体を含有します。 (2)ソフト脂質の豊富なペレット; (3)細胞の可溶性タンパク質と複合体の大部分を含む大きな透明な黄色がかった層と、 (4)「うろこ状の「トップ層は、脂質からなります。
    13. すべてのを実行します低温室(4℃)でubsequent手順。 1ミリリットルピペットを用いて可能な限りトップ「うろこ状」脂質層の多くを削除し、破棄します。黄色、クリア層のほとんどを回復するために10ミリリットルの血清学的ピペットを使用してください。
    14. 下の二つの層を乱さないために、1 mlピペットを使用して、この層の最後の数ミリリットルを回復します。 40グラム湿細胞ペレットから、中間層の約48ミリリットルは、一般的に回収され、脂質層の8ミリリットルを廃棄/削除します。
      注:カラム精製の流れを大幅に以下に述べる、また複合体の品質を低下させることができる脂質の存在によって妨げられます。

2.カラム精製ステップ1:IgGのクロマトグラフィー

  1. 樹脂の平衡化とバインディング
    1. 細胞ペレットの40グラムのために300μlのIgGのセファローススラリーを準備します。スラリーをピペット容易にするために、1ミリリットルピペットチップの先端をカットします。ウォッシュ/ IgGは5ミリリットルIgGD150ブフェで3回、毎回樹脂平衡化R(10mMのトリス-HCl、pH8.0の、150mMのNaCl、150mMの塩化カリウム、1mMのMgCl 2、5 mMイミダゾール、pHを8; 0.1%(v / v)のNP-40; 1mMのDTT、50当たりプロテアーゼ阻害剤錠剤ミリリットルボリューム)。
      1. 洗浄の間に160×gで(4℃)でペレット化し、上清を除去するためにスピン。
    2. 2時間(4℃)のために、適切な回転子を使用して、中間相上清と細胞の40グラムごとに2つのミニプロテアーゼ阻害剤の錠剤を有するIgG樹脂を回転させます。これは、IgGバッチソリューションです。
    3. フラットカットを生成するためにカラムの端を切断して使用するために2つの10 mlのポリプレップカラムを準備します。重力流によってカラムの充填及び洗浄を円滑に行うために、10ミリリットル列あたりのIgGバッチ溶液200パックされたIgGの樹脂のμlあるいは〜25ミリリットルの最大値をロードします。
    4. カラムにIgGのバッチ液を注ぎ、重力によって沈降することを可能にします。沈降が長く30分以上かかる場合は遠心トンから中間相を回収する際に、最も可能性の高い脂質汚染がありましたubes。
    5. IgGD150バッファの4つの連続した​​10ミリリットルボリュームを充填したカラムを洗浄します。
  2. 列のTEV切断に
    1. 塔の底部をシールし、IgGD150バッファおよびTEVプロテアーゼ100μlの(0.6 mg / mlでストック、TEVのS219Vが内製突然変異体)の1ミリリットルを追加します。列の上部を密封し、20分(18℃)で750 rpmで振とうしながら、熱ミキサーを用いて混合します。再懸濁樹脂と1時間のインキュベーションの合計もう一度繰り返し、20分間再び混合します。
      注:最低限にインキュベーション時間を維持することが重要です。
    2. 4°Cに列を戻し、重力によってタンパク質/複合体を溶出させます。 IgGD150バッファの追加の200μlでデッドボリュームを溶出。

3.カラム精製ステップ2:カルモジュリンアフィニティークロマトグラフィー

  1. 樹脂の平衡化とバインディング
    1. セルの40グラムあたりカルモジュリン親和性樹脂200μlのを準備しますペレット。 150mMのNaCl; 10mMの塩化カリウム、1mMのMgCl 2、5 mMイミダゾール、pHが8; 2ミリモルのCaCl 2; 0.1 5 mlのBuffer(10mMのトリス-HCl、pH8.0の結合カルモジュリンで樹脂を3回、各回の洗浄%v / vのNP-40; 10mMのβメルカプトエタノール)、160×gで(4℃)で遠心分離は、各洗浄のためにペレット化します。
    2. 各1ミリリットルのIgG溶出液に、結合緩衝液カルモジュリンの3ボリュームを追加します。カルシウムレベルが一定に保つために、IgGを溶出におけるこれらの成分の不足を考慮するためにのCaCl 2およびβメルカプトエタノールを追加します。最終濃度は2 mMの塩化カルシウム及び10mMのβメルカプトエタノールであるべきです。
    3. カルモジュリン樹脂にサンプルを追加し、チューブローテーターを用いて、1時間(4℃)のために結合します。
  2. 梱包およびカルモジュリン樹脂から溶出しました
    1. 平らな開口部を作成するために、カラムの端を切断して100μlのカルモジュリンスラリーあたり2ミリリットルのポリプレップカラムを準備します。共同あたりせいぜい100μlのカルモジュリンスラリーをロードしませんサンプル樹脂の量を最小にするlumnは、溶出時に接触します。
    2. 重力によりカラムをパックし、5ミリリットルカルモジュリン結合バッファーでカラムに3回樹脂を洗浄。
    3. 150mMのNaCl; 10mMの塩化カリウム、1mMのMgCl 2、5 mMイミダゾール、pHが8.0、4mMのEGTA、pH8.0の; 0.08%のVを200μlカルモジュリン溶出緩衝液(10mMのTris-HCl、pHが8.0を添加してタンパク質を溶出/ V NP-40; 10 mMのβメルカプトエタノール)。カルモジュリン溶出バッファーを200μlの6回の追加を繰り返します。
    4. 溶出液1〜3の場合は、列にボリュームを適用すると、すぐに溶出液を集めます。溶出4の場合は、カラムの底部をシールし、2.5分間の溶出緩衝液でインキュベートした後、開封し、重力によって溶出することができます。溶出5の場合、5分間インキュベートした後、開封し、溶出します。溶出6の場合は、10分間インキュベートした後、開封し、溶出します。
      注:複合体の完全性は、(代表的な結果のセクションを参照)溶出/画分の間で異なる場合があります<。/李>
    5. 適切な微小透析法を用いて一晩個別6に溶出2を透析します。透析緩衝液(; 150mMのNaCl、10mMの塩化カリウム、1mMのMgCl 2、5 mMイミダゾール、pHが8; 10mMのβメルカプトエタノール、10mMのトリス-HCl、pH8.0)に抗して画分を透析します。
      注:NP-40は、透析膜を介して、すべての場合、かなり渡しません。

4.ポスト精製の分析は複雑な品質を評価するために、

  1. 天然ゲルおよび銀染色
    1. 製造元からの指示に従って、複合体の解析のために16%のプレキャストネイティブゲル - 4を準備します。ゲルに透析カルモジュリン溶出/画分のそれぞれの適切な分子量のタンパク質標準と負荷15μLを使用してください。
    2. 約3時間(4℃)を150 Vでゲルを電気泳動します。
    3. 銀は6溶出の各々の品質を評価するために、ゲルを染色します。また、均等に敏感な商業を使用蛍光染色(複数可)。この段階では、複合体の濃度は、クマシーブルー染色の検出レベル以下の可能性が高いです。
  2. 追加のゲル解析手法
    1. ウェスタンブロッティングによってタンパク質を検出するために、SDSまたはネイティブPAGEによる複合体を解決した後、製造業者の指示に従って、TAPタグ抗体を用いて、カルモジュリン結合ペプチド(CBP)エピトープためのゲルを調べます。
    2. 特異的な蛍光染色(複数可)を使用して、複雑な精製されたTAP中のタンパク質及び/又は核酸の存在および完全性を確認します。何のスペクトルの重複がこれらの汚れの間に検出されないように注意してください。
  3. ネガティブ染色電子顕微鏡可視化
    1. 複雑なアプリケーションの30分以内に、グロー放電し30秒間-15 mAで連続した炭素グリッドを使用してください。
    2. グリッドに(典型的には、1 nMの濃度で)TAP精製複合体の3μLを適用します。分インキュベートします。ブロットF過剰な緩衝液を除去するために、グリッドの側をROM。
    3. イオン交換水20μlの滴で二回洗浄します。洗浄の間にサイドブロット。
    4. 50μlのネガティブ染色のドロップにグリッドを適用し分間インキュベートします。酢酸ウラニル(2%)またはウラニルのギ(0.75%)で染色することをお勧めします。
      注意:ウラニル塩およびソリューションは、弱放射性であり、重金属が含まれています。これらは、注意して取り扱うべきであり、これらのソリューションに接触するすべての材料は、制度推奨廃棄物ガイドラインを以下に処分しなければなりません。
    5. ブロッティングすることなく、新鮮な50μlのネガティブ染色のドロップにグリッドを適用します。分、その後側ブロットインキュベートし、最後に乾燥空気と可視化。
  4. クライオ電子顕微鏡(クライオEM)の可視化
    1. 最適化が必要かもしれませんが、製造業者のプロトコルに従って、TAP精製複合体と​​クライオEMを実行します。
      注:高濃度のミリアンペアでの界面活性剤の存在下yが進歩を妨げ、以下に説明します。

5.コンプレックスストレージ

  1. ストレージの準備コンプレックス
    1. 必要に応じて、複合体のための適切な分子量カットオフを有する遠心フィルターを使用して、複合体を濃縮します。所望の濃度に達するまで1分増分の14,000×gでスピン。
      注:それはフィルタや透析膜を通過しないようNP-40濃度は、集中時の濃度が増加します。
    2. Flashは、液体窒素やドライアイス中で30μlのアリコート中の複合体はエタノール槽を冷却し凍結した後、-80℃で保存します。
  2. 洗剤の後のオプション精製の ​​取り外し

注:このようなNP-40などの界面活性剤の、その臨界ミセル濃度のそれ以上の濃度で存在することは、いくつかのアプリケーションのための進行を妨げるまたは阻害することができます。プロトからの除去の結果COLならびに他の添加剤または共溶媒との置換は、以下に議論されます。何のNP-40が必要ない場合は、オプションは、例えば、バイオビーズのために、除去のための商用アプリケーションを使用することです。

  1. 透析緩衝液中でビーズを吸収市販の洗剤を事前に平衡化。 (通常は10 nMの濃度で)複合体の30μlの当たり5ビーズを混ぜます。
  2. 氷上で15分間、TAP精製複合体と​​ステップ5.2.1から平衡化ビーズをインキュベートします。界面活性剤の除去後数時間以内に複合体を使用してください。

結果

修正されたTAP法はSから精製しましたU1 snRNP、18サブユニットリボ核タンパク質複合体をセレビシエ 。公開されたプロトコル2,3次複合体の初期TAPの精製は、銀上の3つのバンドは、ネイティブポリアクリルアミドゲル( 図2A)で染色として移行し、異機種登場複合体を得ました。 TAP法の最適化の複数のラウンドは、より均質なアセンブ?...

ディスカッション

TAP法はタイトで、生理的溶液条件の近くに維持する欲求と親和性樹脂への結合選択性の必要性のバランスをとる二つのタグを利用しています。このバランスは、精製後の特徴付けのための因子(単数または複数)の相互作用でタグ付けされたタンパク質の安定な相互作用(複数可)を維持するのに役立ちます。また、個々のTAPは1つが、任意の酵母複合体のためにタグ付けされたタンパク質?...

開示事項

The authors have nothing to disclose.

謝辞

The authors are grateful for the support and advice of Nikolaus Grigorieff. We thank Anna Loveland, Axel Brilot, Chen Xu, and Mike Rigney for helpful discussions and EM guidance. This work was funded by the National Science Foundation, Award No. 1157892. The Brandeis EM facility is supported by National Institutes of Health grant P01 GM62580.

資料

NameCompanyCatalog NumberComments
S. cerevisiae TAP tagged strainOpen BiosystemsYSC1177This is the primary yeast strain used to develop the TAP protocol. Its background is S288C: ATCC 201388: MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, SNU71::TAP::HIS3MX6
Coffee grinderMr. CoffeeIDS77Used for cell lysis
Hemocytometer, Bright LineHausser Scientific3120Used to assess cell lysis
JA 9.100 centrifuge rotor Beckman Coulter, Inc.Used to harvest the yeast cells
JA 20 fixed-angle centrifuge rotorBeckman Coulter, Inc.Used to clear the cell extract of non-soluble cellular material
Ti 60 fixed-angle centrifuge rotorBeckman Coulter, Inc.Used to further clear the soluble cell extract
ThermomixerEppendorfR5355Temperature controlled shaker
Novex gel systemThermo Fisher Scientific 
IgG resinGE Healthcare17-0969-01Sepharose 6 fast flow
Calmodulin resinAgilent Technologies, Inc.214303Affinity resin
Protease inhibitor cocktail, mini tabletsSigma Aldrich589297Mini cOmplete ultra EDTA-free tablets
Protease inhibitor cocktail, large tabletsSigma Aldrich5892953cOmplete ultra EDTA-free tablets
Phenylmethanesulfonyl fluoride (PMSF)Dissolved in isopropanol
2 ml Bio-spin columnBio-Rad Laboratories, Inc.7326008Used to pack and wash the Calmodulin resin
10 ml poly-prep columnBio-Rad Laboratories, Inc.7311550Used to pack and wash the IgG resin
Precast native PAGE Bis-Tris gelsLife TechnologiesBN1002Novex NativePAGE Bis-Tris 4 - 16% precast polyacrylamide gels
NativeMark protein standardThermo Fisher ScientificLC0725Unstained protein standard used for native PAGE. Load 7.5 μl for a silver stained gel and 5 μl for a SYPRO Ruby stained gel
Precast SDS PAGE Bis-Tris gelsLife TechnologiesNP0321Novex Nu-PAGE Bis-Tris 4 - 12% precast polyacrylamide gels 
PageRuler protein standardThermo Fisher Scientific26614Unstained protein standard used for Western blotting
SDS running bufferLife TechnologiesNP00011x NuPAGE MOPS SDS Buffer
TAP antibodyThermo Fisher ScientificCAB1001Primary antibody against CBP tag
Secondary antibodyThermo Fisher Scientific31341Goat anti-rabbit alkaline phosphatase conjugated
BCIP/NBTThermo Fisher Scientific340425-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium 
Dialaysis unitsThermo Fisher Scientific88401Slide-A-Lyzer mini dialysis units
Centrifugal filter units, 100kDa MWCOEMD MilliporeUFC5100008Amicon Ultra-0.5 Centrifugal Filter Unit with Ultracel-100 membrane
Detergent absorbing beadsBio-Rad Laboratories, Inc.1523920Bio-bead SM-2 absorbants
SYBR Green IIThermo Fisher ScientificS-7564Flourescent dye for nucleic acid staining, when detecting with SYPRO Ruby present, use excitation wavelength of 488 nm and emission wavelength of 532 nm
SYPRO RubyMolecular ProbesS-12000Flourescent dye for protein staining, when detecting with SYBR Green II present, use excitation wavelength of 457 nm and emission wavelength of 670 nm
Copper gridsElectron Microscopy SciencesG400-CP

参考文献

  1. Gavin, A. C., et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 415 (6868), 141-147 (2002).
  2. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., Seraphin, B. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology. 17 (10), 1030-1032 (1999).
  3. Puig, O., et al. The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods. 24 (3), 218-229 (2001).
  4. Vaillancourt, P., Zheng, C. F., Hoang, D. Q., Breister, L. Affinity purification of recombinant proteins fused to calmodulin or to calmodulin-binding peptides. Methods Enzymol. 326, 340-362 (2000).
  5. Braisted, A. C., Wells, J. A. Minimizing a binding domain from protein A. Proc Natl Acad Sci U S A. 93 (12), 5688-5692 (1996).
  6. Kapust, R. B., et al. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. 14 (12), 993-1000 (2001).
  7. Nallamsetty, S., et al. Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro. Protein Expr Purif. 38 (1), 108-115 (2004).
  8. Ghaemmaghami, S., et al. Global analysis of protein expression in yeast. Nature. 425 (6959), 737-741 (2003).
  9. Howson, R., et al. Construction, verification and experimental use of two epitope-tagged collections of budding yeast strains. Comp Funct Genomics. 6 (1-2), 2-16 (2005).
  10. Cox, D. M., Du, M., Guo, X., Siu, K. W., McDermott, J. C. Tandem affinity purification of protein complexes from mammalian cells. Biotechniques. 33 (2), 267-268 (2002).
  11. Gully, D., Moinier, D., Loiseau, L., Bouveret, E. New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification. FEBS Lett. 548 (1-3), 90-96 (2003).
  12. Tharun, S. Purification and analysis of the decapping activator Lsm1p-7p-Pat1p complex from yeast. Methods Enzymol. 448, 41-55 (2008).
  13. Xu, X., Song, Y., Li, Y., Chang, J., Zhang, H., An, L. The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification. Protein Expr Purif. 72 (2), 149-156 (2010).
  14. Cheng, Y., Grigorieff, N., Penczek, P. A., Walz, T. A Primer to Single-Particle Cryo-Electron Microscopy. Cell. 161 (3), 438-449 (2015).
  15. Gottschalk, A., et al. A comprehensive biochemical and genetic analysis of the yeast U1 snRNP reveals five novel proteins. RNA. 4 (4), 374-393 (1998).
  16. Neubauer, G., Gottschalk, A., Fabrizio, P., Seraphin, B., Luhrmann, R., Mann, M. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc Natl Acad Sci U S A. 94 (2), 385-390 (1997).
  17. Lucast, L. J., Batey, R. T., Doudna, J. A. Large-scale purification of a stable form of recombinant tobacco etch virus protease. Biotechniques. 30 (3), 544-546 (2001).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

113 U1 snRNP

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved