A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The Tandem Affinity Purification (TAP) method has been used extensively to isolate native complexes from cellular extract, primarily eukaryotic, for proteomics. Here, we present a TAP method protocol optimized for purification of native complexes for structural studies.
Affinity purification approaches have been successful in isolating native complexes for proteomic characterization. Structural heterogeneity and a degree of compositional heterogeneity of a complex do not usually impede progress in conducting such studies. In contrast, a complex intended for structural characterization should be purified in a state that is both compositionally and structurally homogeneous as well as at a higher concentration than required for proteomics. Recently, there have been significant advances in the application of electron microscopy for structure determination of large macromolecular complexes. This has heightened interest in approaches to purify native complexes of sufficient quality and quantity for structural determination by electron microscopy. The Tandem Affinity Purification (TAP) method has been optimized to extract and purify an 18-subunit, ~ 0.8 MDa ribonucleoprotein assembly from budding yeast (Saccharomyces cerevisiae) suitable for negative stain and electron cryo microscopy. Herein is detailed the modifications made to the TAP method, the rationale for making these changes, and the approaches taken to assay for a compositionally and structurally homogeneous complex.
Many major cellular processes are carried out by large protein and protein-RNA complexes1. A significant bottleneck to conducting biophysical and structural studies of such complexes is obtaining them of a suitable quality (i.e., homogeneity) and at an appropriate concentration. Isolating a complex from a native source has many advantages, including retaining relevant post-transcriptional and/or translational modifications of subunits and insuring proper complex assembly. However, large cellular complexes are often present in a cell at a low copy number and the purification must be highly efficient and occur under near physiological conditions to ensure complex integrity is maintained. Purifying a complex from a eukaryotic source is particularly challenging and can be financially prohibitive. Thus, strategies or methods that are efficient and yield a homogeneous complex are highly desired.
A strategy that has been successful in purifying native complexes from eukaryotic cells for their initial characterization is the Tandem Affinity Purification (TAP) method2,3. The TAP method was initially devised to purify a native protein from the budding yeast (S. cerevisiae) in complex with interacting factor(s)2. The TAP method utilized two tags, each tag fused in tandem to the same protein-coding gene sequence. The tags were selected so as to balance a need for tight and selective binding to an affinity resin with a desire to maintain near physiological solution conditions. This balance serves to preserve stable interaction(s) of the tagged protein with interacting factor(s) for post-purification characterization. The genomically incorporated TAP tag was placed at the end (C-terminal) of a protein-coding gene and consisted of a sequence coding for a Calmodulin Binding Peptide (CBP) followed by Protein A - an addition of just over 20 kDa to the tagged protein. CBP is short, 26 amino acids, and recognized by the ~ 17 kDa protein Calmodulin (CaM) in the presence of calcium with a KD on the order of 10-9 M 4. The Protein A tag is larger, consisting of two repeats of 58 residues with a short linker between the repeats. Each 58 amino acid repeat is recognized by immunoglobulin G (IgG) with a KD ~ 10-8 M 5. Between these two tags was incorporated a recognition site for TEV protease, an endopeptidase from the Tobacco Etch Virus6,7. As illustrated in Figure 1, in the first affinity step of the method the TAP tagged protein is bound to an IgG resin via the Protein A. The tagged protein is eluted by on column cleavage upon the addition of TEV protease, site-specifically cleaving between the two tags. This is a necessary step as the interaction of IgG and Protein A is very strong and can only be adequately perturbed under denaturing solution conditions. Lacking a Protein A tag, the protein is bound to CaM resin in the presence of calcium and eluted from this resin with addition of the metal ion chelator EGTA (ethylene glycol tetraacetic acid) (Figure 1).
Soon after the introduction of the TAP method, it was used in a large-scale study to generate a 'map' of complex interactions in S. cerevisiae8. Importantly, as a consequence of this effort an entire yeast-TAP Tagged Open Reading Frame (ORF) library as well as individual TAP tagged ORFs9 are available from a commercial source. Thus, one can obtain any yeast strain with a tagged protein for any yeast complex. The TAP method also spurred modifications or variations of the TAP tag, including: its use for purification of complexes from other eukaryotic as well as bacterial cells10,11; the design of a "split tag", wherein the Protein A and CBP are placed on different proteins12; and the tags changed, so as to accommodate the need of the investigator, such as sensitivity of the complex to Ca2+ or EGTA13.
Recent advances in both instrumentation and methodology have led to significant advances in the application of electron microscopy (EM) for structure determination, that have led to high, near atomic resolution images of macromolecular complexes14. The resolution obtainable of a complex by EM, however, remains contingent upon the quality of the complex under study. This study has utilized the TAP tag approach to purify from S. cerevisiae the U1 snRNP, an 18-subunit (~ 0.8 MDa) low copy number ribonucleoprotein complex that is part of the spliceosome15,16. A number of steps have been taken to purify this complex such that it is homogeneous and of an adequate concentration. Potential problems encountered at various stages of the purification are described and strategies taken to overcome challenges highlighted. By carefully assessing and optimizing steps in the purification, the U1 snRNP purified is of a quality and at a quantity suitable for negative stain and electron cryo microscopy (cryo-EM) studies. An optimized TAP method protocol for purification of native complexes for structural studies is described herein.
Note: The following protocol was devised for purification of a complex from 4 L of cell culture, approximately 40 g wet weight of cells. Once prepared, all buffers should be stored at 4 °C and used within a month of their preparation. Reducing agent and protease inhibitors are only added to buffers just prior to use.
1. Preparation of Whole Cell Extract for Tandem Affinity Purification
2. Column Purification step 1: IgG Chromatography
3. Column Purification Step 2: Calmodulin Affinity Chromatography
4. Post-Purification Analyses to Assess Complex Quality
5. Complex storage
Note: The presence of a detergent such as NP-40 and at a concentration above that of its critical micelle concentration may hinder or inhibit progress for some applications. The consequences of its removal from the protocol as well as replacement with other additives or co-solvents are discussed below. If no NP-40 is desired, an option is to use a commercial application for removal, for example Bio-beads.
A modified TAP method was used to purify from S. cerevisiae the U1 snRNP, an 18-subunit ribonucleoprotein complex. An initial TAP purification of the complex following the published protocol2,3 yielded a complex that appeared heterogeneous, migrating as three bands on a silver stained native polyacrylamide gel (Figure 2A). Multiple rounds of optimization of the TAP method, yielded a complex that migrated as primarily a single band on a native gel indic...
The TAP method utilizes two tags that balance a need for tight and selective binding to an affinity resin with a desire to maintain near physiological solution conditions. This balance serves to preserve stable interaction(s) of the tagged protein with interacting factor(s) for post-purification characterization. In addition, individual TAP tagged ORFs are available from a commercial source, so that one can obtain any yeast strain with a tagged protein for any yeast complex. Preserving the integrity of a complex and the ...
The authors have nothing to disclose.
The authors are grateful for the support and advice of Nikolaus Grigorieff. We thank Anna Loveland, Axel Brilot, Chen Xu, and Mike Rigney for helpful discussions and EM guidance. This work was funded by the National Science Foundation, Award No. 1157892. The Brandeis EM facility is supported by National Institutes of Health grant P01 GM62580.
Name | Company | Catalog Number | Comments |
S. cerevisiae TAP tagged strain | Open Biosystems | YSC1177 | This is the primary yeast strain used to develop the TAP protocol. Its background is S288C: ATCC 201388: MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, SNU71::TAP::HIS3MX6 |
Coffee grinder | Mr. Coffee | IDS77 | Used for cell lysis |
Hemocytometer, Bright Line | Hausser Scientific | 3120 | Used to assess cell lysis |
JA 9.100 centrifuge rotor | Beckman Coulter, Inc. | Used to harvest the yeast cells | |
JA 20 fixed-angle centrifuge rotor | Beckman Coulter, Inc. | Used to clear the cell extract of non-soluble cellular material | |
Ti 60 fixed-angle centrifuge rotor | Beckman Coulter, Inc. | Used to further clear the soluble cell extract | |
Thermomixer | Eppendorf | R5355 | Temperature controlled shaker |
Novex gel system | Thermo Fisher Scientific | ||
IgG resin | GE Healthcare | 17-0969-01 | Sepharose 6 fast flow |
Calmodulin resin | Agilent Technologies, Inc. | 214303 | Affinity resin |
Protease inhibitor cocktail, mini tablets | Sigma Aldrich | 589297 | Mini cOmplete ultra EDTA-free tablets |
Protease inhibitor cocktail, large tablets | Sigma Aldrich | 5892953 | cOmplete ultra EDTA-free tablets |
Phenylmethanesulfonyl fluoride (PMSF) | Dissolved in isopropanol | ||
2 ml Bio-spin column | Bio-Rad Laboratories, Inc. | 7326008 | Used to pack and wash the Calmodulin resin |
10 ml poly-prep column | Bio-Rad Laboratories, Inc. | 7311550 | Used to pack and wash the IgG resin |
Precast native PAGE Bis-Tris gels | Life Technologies | BN1002 | Novex NativePAGE Bis-Tris 4 - 16% precast polyacrylamide gels |
NativeMark protein standard | Thermo Fisher Scientific | LC0725 | Unstained protein standard used for native PAGE. Load 7.5 μl for a silver stained gel and 5 μl for a SYPRO Ruby stained gel |
Precast SDS PAGE Bis-Tris gels | Life Technologies | NP0321 | Novex Nu-PAGE Bis-Tris 4 - 12% precast polyacrylamide gels |
PageRuler protein standard | Thermo Fisher Scientific | 26614 | Unstained protein standard used for Western blotting |
SDS running buffer | Life Technologies | NP0001 | 1x NuPAGE MOPS SDS Buffer |
TAP antibody | Thermo Fisher Scientific | CAB1001 | Primary antibody against CBP tag |
Secondary antibody | Thermo Fisher Scientific | 31341 | Goat anti-rabbit alkaline phosphatase conjugated |
BCIP/NBT | Thermo Fisher Scientific | 34042 | 5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium |
Dialaysis units | Thermo Fisher Scientific | 88401 | Slide-A-Lyzer mini dialysis units |
Centrifugal filter units, 100kDa MWCO | EMD Millipore | UFC5100008 | Amicon Ultra-0.5 Centrifugal Filter Unit with Ultracel-100 membrane |
Detergent absorbing beads | Bio-Rad Laboratories, Inc. | 1523920 | Bio-bead SM-2 absorbants |
SYBR Green II | Thermo Fisher Scientific | S-7564 | Flourescent dye for nucleic acid staining, when detecting with SYPRO Ruby present, use excitation wavelength of 488 nm and emission wavelength of 532 nm |
SYPRO Ruby | Molecular Probes | S-12000 | Flourescent dye for protein staining, when detecting with SYBR Green II present, use excitation wavelength of 457 nm and emission wavelength of 670 nm |
Copper grids | Electron Microscopy Sciences | G400-CP |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved