JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

この研究は、3D、生体適合性の側鎖型液晶エラストマー(種の保存法)に基づいて、生分解性、泡様細胞の足場を調製するための方法論を提示します。共焦点顕微鏡実験は泡状種の保存法は、細胞の付着、増殖、およびC2C12s筋芽細胞の自発的なアライメントを可能にすることを示しています。

要約

ここでは、3D、生分解性、泡様細胞足場のステップバイステップの準備を提示します。これらの足場は、スメクチックA(SMA)、液晶エラストマー(種の保存法)で得られた、側鎖のペンダント基としてコレステロールユニットを搭載星型ブロックコポリマーを架橋することによって調製しました。泡のような足場は、3D細胞培養足場、それらに適したものに、金属テンプレートを用いて調製し、相互接続さマイクロチャネルを備えています。従来の多孔質テンプレートフィルムと比較するだけでなく、より高い細胞増殖を促進する三次元細胞骨格における金属発泡体の規則的な構造のエラストマー結果の組み合わせの特性だけでなく、大量輸送のより良い管理( すなわち、栄養物、ガス、廃棄物、 など )。金属テンプレートの性質は、泡の形状( すなわち、ロールまたはフィルム)の容易な操作を可能にし、異なる細胞研究のための異なる孔径の足場の調製のためのinterconnecを維持しながら、テンプレートのテッド多孔性の性質。エッチングプロセスは、その生体適合性および生分解性を維持したまま、エラストマーの化学的性質に影響を与えることはありません。私たちは、細胞の成長と増殖を促進しながら、これらのスメクティック種の保存法は、広範囲の期間のために増殖させた場合、臨床的に関連して、複雑な組織構築物の研究を可能にすることを示しています。

概要

細胞研究において、細胞の付着および増殖を1、2、3、4、5を目指し組織再生のためのアプリケーションのために設計された生物学的および生体適合性合成材料のいくつかの例があります。 6、 図7を注文分子異方性の外部刺激に応答することができ、液晶エラストマー(種の保存法)として知られている生体適合性材料のいくつかの例、、がありました。種の保存法は、光学機能と液晶8,9の分子秩序を有するエラストマーの機械的および弾性特性を組み合わせた刺激応答性物質です。種の保存法外部STIMに応じて形状、機械的変形、弾性挙動、および光学的性質の変化を体験することができULI( すなわち 熱、応力、光、 )10、11、12、13、14、15、16。以前の研究では、液晶(LCS)がセル4、17の成長と配向を感知することができることを示しています。これは種の保存法が細胞の足場とアラインメントを含む、生物学的および医学的に関連する用途に好適であり得ると仮定することが可能です。我々は以前、「スイスチーズの種類」、多孔質の形態6、18搭載スメクティック生体適合性、生分解性、キャスト成形、および薄い種の保存法フィルムの作製を報告しています。我々はまた、細胞増殖19 <ための足場として球状形態を有するネマチック生体適合性種の保存法調製しますSUP>、20。私たちの仕事は、関心21の組織のものと一致する材料の機械的特性を調整することを目的としています。また、これらの研究は、エラストマー - 細胞相互作用、ならびにエラストマーは外部刺激の対象となる細胞応答を理解することに焦点を当てます。

主な課題は、エラストマーマトリックスを介してより良い大量輸送のための細胞の付着および浸透を可能にするために、種の保存法の気孔率を調整する部分でした。これらの薄膜6の気孔率は、マトリックスのバルクを通って細胞透過性のために許可され、すべてではない孔が完全に相互接続されたまたは孔(均質)よりレギュラーサイズを有していました。私たちは、その後、球状の形態を有する生体適合性ネマチックLCEエラストマーについて報告しました。これらネマチックエラストマーは、付着および細胞の増殖を許容するが、細孔サイズが防止10-30ミクロンからのみ範囲又はこれらの使用を制限し細胞株19,20の広い様々なエラストマー。

クンの前の仕事 「犠牲」金属テンプレートを使用してグラフェン発泡体の形成に関連して得られたグラフェンフォームが選択された金属テンプレート22によって決定非常に規則的な多孔性の形態を有することを示しました。この方法では、気孔率及び気孔サイズの完全な制御を提供しています。同時に、金属テンプレートの可鍛性と柔軟性は、前のフォームの準備に異なるテンプレート形状の形成を可能にします。いくつかのケースでは、細孔サイズは、限定され、そのような材料の浸出23、ガステンプレート24、または電気紡糸繊維25、26のような他の技術は、また、多孔性材料の調製のための可能性を提供するが、それらはより多くの時間がかかるとされていますわずか数メートル。フォーム3D種の保存法様金属テンプレートは、より高いセル負荷を可能に用いて調製。改善された増殖速度。共培養;そして、、少なくとも最後のではなく、より良い大量輸送管理( すなわち 、栄養素、ガス、及び廃棄物)の完全な組織開発27を確保します。泡状3D種の保存法は、細胞整列を改善するように見えます。これは、細胞増殖と細胞の向きを検知するLCのペンダントとの関係で最も可能性が高いです。 LCE内のLC部分の存在は、LCE足場内の細胞の位置に対する細胞配向性を高めるように見えます。支柱は、一緒に(接合部)27の参加ここでは明確な配向が観察されないながら細胞は、LCEの支柱内に整列させます。

全体として、細胞支持体としてのLCE細胞足場プラットフォームを調整するために、エラストマーの形態と弾性特性、特にO順序付けられた、空間的配置を作成する(個々の)細胞型の位置合わせを指示するの機会を提供します生体系に似てF細胞。別に維持および長期細胞成長および増殖を指示することができる足場を提供することから、種の保存法はまた、細胞の配向との相互作用をオンザフライで修正することができる動的な実験を可能にします。

Access restricted. Please log in or start a trial to view this content.

プロトコル

注記:3アームスターブロック共重合体を用いた3D LCE泡状調製のための以下のステップは、 図1に示されています。核磁気共鳴(NMR)特性決定のために、スペクトルは、Bruker DMX 400 MHz装置で室温で重水素化クロロホルム(CDCl 3中)に記録されており、内部7.26の残留ピークを参照します。フーリエ変換赤外(FT-IR)スペクトルを変換する減衰全反射モードを用いたBrukerベクトル33 FT-IR分光計を用いて記録されています。以下のプロトコルの各ステップについては、適切な個人保護衣(PPE)を着用することが重要です。

(ジェロームの手順に従って28)αクロロεカプロラクトン(モノマー)の合成

  1. 次のように合成を開始する前に、3-クロロ過安息香酸を27gの精製:
    1. 蒸留水800mlに、ナトリウムの1.28グラムを加えますリン酸一水和物及びリン酸ナトリウム二塩基性七水和物の8.24グラム。リザーブこの溶液30mL(水酸化ナトリウムまたは塩酸を使用して)pHを7.4に調整します。これは、緩衝溶液です。
    2. 分液漏斗を使用して、ジエチルエーテル35mlに3-クロロ過安息香酸を溶解させます。 (ステップ1.1.1で調製した。)緩衝液10mlで有機溶液を洗浄。洗浄を3回繰り返します。
    3. 有機溶液に直接硫酸ナトリウムを3gを加えます。この乾燥剤は、有機溶液から水を吸収します。
    4. 乾燥剤を除去するためのソリューションをフィルタリングします。 850ミリバール及び40℃でロータリーエバポレーターを用いて減圧下で濾液を濃縮しました。
  2. 超音波浴中で撹拌することにより乾燥ジクロロメタン150mLに精製された3-クロロ過安息香酸18.5gのを可溶化します。このプロセスは、通常20分かかります。分液ロート内のソリューションを置きます。
  3. 二口、丸底フラスコの中で、窒素ガス下でマグネチックスターラーを用いて乾燥ジクロロメタン15mLに2-クロロシクロヘキサノンの13.1グラムを溶解します。攪拌してください。
  4. ステップ1.3において二口フラスコに(ステップ1.2から)、3-クロロ過安息香酸の溶液を含有する分液漏斗に合います。窒素ガスでシステムをフラッシュします。クロロ過安息香酸の溶液を、2-クロロシクロヘキサノン溶液に滴下して入るように分液漏斗の開度を調整(1滴おきに秒)及び96時間窒素ガス下で混合物を攪拌し続けます。
  5. M -chlorobenzoic酸(m個 -CBA)副生成物を沈殿させ、1時間-20℃に反応混合物を冷却します。
  6. M -chlorobenzoic酸(m個 -CBA)を濾過し、チオ硫酸ナトリウム、重炭酸ナトリウム、および塩化ナトリウムの飽和溶液で残りの溶液を洗浄します。
  7. 850ミリバール及び40℃でロータリーエバポレーターを用いて減圧下で溶媒を除去します。淡黄色の粘性liquを精製2.3トルおよび96℃で減圧蒸留によりID。
  8. 以下の1つの H NMRピークを用いた合成の成功を監視します。 1 H NMR(400 MHzの、CDCl 3中、δ[PPM]):4.75から4.68(M、1H、C H CLCO)、4.37から4.26(M、1H、C H 2 O)、4.18から4.05(M、1H 、C H 2 O)、及び2.06から1.58(M、6H、-C H 2 - )6、27。

開環共重合させてα-3アームスターブロックコポリマー(SBC-αCl)の2の合成(シャルマ 6とAmsden 29)

  1. 合成前に、トルエン中の1H、1H、2H、2H- perfluorooctyltriethoxysilaneの2%(v / v)の溶液でそれを充填し、約24時間撹拌し、20 mLのアンプルをsilanize。イソプロピルアルコールでリンスし、30分間140℃のオーブンの中に置くことによって、それを乾燥させます。
  2. 3を追加蒸留εカプロラクトンの0.64グラム、αクロロεカプロラクトンを0.5g、およびアンプルへのグリセロールの0.25ミリリットル。 1分間ボルテックスを用いて混ぜます。
  3. アンプルにDの4.90グラム、Lのラクチドを追加し、窒素でそれをパージします。 D、Lラクチドを溶融するために120℃のオーブン中でアンプルを置きます。このプロセスは、典型的には約2時間かかります。すべての内容はよく混合され、(2のSn(10月))アンプルに錫の66μL(II)2-エチルヘキサン酸を追加することを確認するために渦を使用して再度混ぜます。
    NOTE:D、Lラクチドは、このプロセスの間に冷却し、溶融したオーブンで再加熱する必要があります。
  4. 激しく渦を使用して最後の時間をミックスし、窒素でフラッシュします。
  5. ゴム栓でアンプルを閉じます。真空管に接続された針を置きゴム栓を介して(ハウスバキューム、通常十分です)。 Gまでゆっくりひねり、真空をオンにして、火炎を用いて、ガラスの長い首を溶融少女は、それ自体に崩壊します。ゴム栓を溶融しないように注意してください。アンプルは、火炎密封したら、48時間140℃の砂浴、オーブン、または適切な加熱要素に配置します。
  6. アンプルを取り出し、それを室温で冷却しましょう。
  7. 密閉されたマークでアンプルを破壊し、ジクロロメタン10mLを添加することにより、高粘性液体を溶解します。分液漏斗にソリューションを転送します。
  8. 冷メタノール100mLを含有するフラスコを準備し(-78°C前後の温度でドライアイス/アセトン浴を用いて冷やし)。フラスコの上部に分液漏斗(ステップ2.7)に固定します。約2滴は、すべての他の第二(滴下して)落ちるように、分液漏斗の開口を調整します。
  9. (濾紙を使用)を濾過により白色沈殿物を収集し、50と60℃の間の真空オーブンで乾燥します。
  10. 以下の1 H NMR及びFT-IRピークを用いた合成の成功を監視します。 1 H NMR(400 MHzの、CDCl 3中、δ[PPM]):5.29から5.03(M、COC H C H 3)、4.43から4.25(M、C H CL)、4.24から4.12(M、C H 2 O)、4.11から4.03(T、J = 4.6 Hzの、C H 2 O)、3.80から3.68(M、C H C H 2)、3.09から2.64(ブロード、S、O H)、2.39(T、J = 4.5 Hzの、α-H)、2.33 (T、J = 5.1 Hzの、α-H)、及び1.77から1.25(M、C H 2、C H 3)。 FT-IR(1 /λ[-1]):2932(S)、2869(m)は、1,741(S)、961(S)、866、および735(M)6、27。
    注:上記開環共重合(ROP)の手順に従って、より親水性の3D LCEを調製代わりにSBCの線状ブロック共重合体(LBC)を調製しました。
    1. シラン処理バイアル混合物にポリエチレングリコール(PEG)を0.3gを追加し、3.15グラムのεカプロラクトン、αクロロεカプロラクトンを1.0g、及びDを5.0g、L-ラクチド。

(シャルマによる。6)3αN3 -ThreeアームSBC(SBC-αN3)のα-CL-三アームSBCの合成修飾

  1. 丸底フラスコに、窒素下、乾燥N、N」ジメチルホルムアミド30mLにSBC-αClを5g溶解します。
  2. アジ化ナトリウムの0.22グラムを追加し、室温で一晩反応することができます。
    注意:アジ化ナトリウムは有毒です。適切な個人保護衣(PPE)を着用。
  3. N、11ミリバール及び40℃でロータリーエバポレーターを用いて減圧下でN」ジメチルホルムアミドを除去します。トルエン30mL中の混合物を溶解させます。形成された塩を除去するために15分間2,800×gで三回溶液を遠心分離。 77ミリバール及び40℃でロータリーエバポレーターを用いて減圧下でトルエンを蒸発させます。
  4. 1 H NMR及びFT-IRピークを使用してアジド置換の成功を監視します。
    注意: 1つのH NMRスペクトルは、アジド基に関連する3.90 ppmでのピークの出現を除いて、親SBC-αClと同様でした。 FT-IR(1 /λ[-1]):2928、2108、(S、アジド)、1754(s)は、1450(s)は、960(M)、865(S)、733(S)、および696 (M)。

4.(シャルマによる。6とドナルドソン 30)コレステリル5- Hexynoate(LC部分)の合成

  1. 丸底フラスコに、5-ヘキシン酸3g及びジクロロメタン130ミリリットルを混合します。氷浴を用いて0℃に冷却します。
  2. 別の丸底フラスコに、N、N」ジシクロヘキシルカルボジイミドの8.28グラム、コレステロールの10.3グラム、および4-ジメチルアミノピリジン0.2gを混合します。
  3. コレステロールの混合物を含むフラスコに、5-ヘキシン酸溶液を滴下して移し、0℃で1時間、最終的な混合物を維持します。
  4. 混合物を一晩室温まで昇温することを許可します。
  5. グレード415濾紙を用いて濾過することにより得られたジシクロヘキシル尿素沈殿物を除去し、それを捨てます。
  6. 850ミリバール及び40℃でロータリーエバポレーターを用いて減圧下で濾液を濃縮します。ヘキサン150mLに集められた残渣を溶解します。
  7. 335ミリバール及び40℃でロータリーエバポレーターを用いて減圧下で溶媒を蒸発させます。最終生成物を回収し、油状残渣にエタノール350 mLを加え。エタノールが形成され、オフホワイトの固体を洗浄し、50℃の真空下で固体生成物を乾燥させます。
  8. 以下の1 H NMR及びFT-IRのピークを用いて合成をモニターします。 1 H NMR(400 MHzの、CDCl 3、δ[PPM]):5.39(D、J = 4.7ヘルツ、1H、C H = C)、4.70から4.58(M、1H、C H OCO)、2.44(T、 J = 2.5 Hzの、2H、C H 2 CO)、2.34(M、2H、C H 2 -C = H)、2.31(M、2H、C H 2、C H 2 -COO)、2.28(s、1H、 HC≡C)、2.27(D、J = 2.3 Hzで、2H、≡CCH 2)、2.07から1.06(M、2H、C H 2、C H)、0.94(s、3H、C H 3)、0.89 (D、J = 1.8 Hzで、3H、C H 3 C H)、および0.88(D、J = 1.8 Hzの、6H、C H 3 -C H)、0.67(s、3H、C H 3)。 FT-IR(1 /λ[-1]):2,830-2,990(広範かつ強いピーク)、2104(m)は、1,695(S)、1428(m)は、1,135(M)、999(S)、798 (S)、および667(S)。

5.合成改変α-N 3 -ThreeアームSBCは、α-コレステリル三アームSBCアジド-アルキンヒュイゲンシクロ付加反応を介して(SBC-αCLC)( "クリック"反応)による(SBC-Cholでを取得するためにシャルマ 6)

  1. 丸底フラスコに、新たに蒸留したテトラヒドロフラン(THF)100mLにSBC-αN3(1.5g)を1モル当量を溶解します。 1.2モルequivalenを追加コレステリル5- hexynoate(1.94グラム)、銅(I)の0.1モル当量のヨウ化物(0.06 g)を、T、及びトリエチルアミン0.1モル当量(0.03 g)を得ました。窒素下で35℃で一晩、混合液を撹拌しました。
  2. 357ミリバール及び40℃でロータリーエバポレーターを用いて減圧下で溶媒を蒸発させます。
  3. ジクロロメタン80ml中の残留混合物を溶解し、未反応材料及び副生成物を除去するために、室温にて2,800×gで5分間遠心します。
  4. 以下の1 H NMR及びFT-IRのピークを用いて合成をモニターします。 1 H NMR(400 MHzの、CDCl 3中、δ[PPM]):7.54(S、CH = Cトリアゾール)、5.43から5.34(M、C = CHコレステロール)、5.10から5.06(M、COCHCH 3)、4.68 -4.55(M、O-CHコレステロール)、4.24から4.19(M、CH 2 O)、4.18から4.13(T、J = 5.0 Hzで、CH 2 O)、4.11から4.05(T、J = 4.4 Hzで、CH 2 O)、2.47から2.41(T、J = 4.9 Hzで、COCH 2)、2.31から2.25(M、COCH 2)、2.07から1.02(M、CH 2 、CH 3)、1.05から1.03(S、CH 2、CH 3)、0.96から0.92(D、J = 3.3 Hzで、CH 2、CH 3)、0.91から0.87(DD、J = 1.9 Hzで、J = 1.8ヘルツ、CH 3)、0.71から0.68(s、CH 3)。 FT-IR(1 /λ[-1]):3260(s)は、2,920(S)、1,710(S)、1,460(S)、1,370(S)、1240(m)は、1,190(S)、733 (S)、および668(S)。

2,2-ビス(1-カプロラクトン-4-イル)プロパン(架橋剤、BCP)の6の合成(ガオ 27及びAlbertsson による。31)

  1. 丸底フラスコに、1,2-ビス(4-ヒドロキシシクロヘキシル)プロパン及び酢酸52 mLを10.8gのを含有する溶液を調製。
  2. 酢酸50mLおよび蒸留水8mlに三酸化クロムの11グラムを含有する溶液を調製します。で、例えば、17と20℃(混合物との間の温度を維持しながら、ステップ6.1で調製した溶液に、この溶液を滴下して加えます水浴);この滴下法は、2時間を要します。プロセスが完了すると、溶液を約30分間攪拌することができます。
  3. 2-プロパノール50 mLを加え。室温で一晩ソリューションをかき混ぜます。
  4. 137ミリバール及び40℃でロータリーエバポレーターを用いて減圧下暗紫色溶液を濃縮。沈殿を蒸留水300mLを追加します。沈殿物は、紫色の光でなければなりません。
  5. グレード415ペーパーフィルターを使用して、粗生成物をろ過します。蒸留水〜250mLで又は固体が白色になるまで固体物質を洗浄します。
  6. 40℃でベンゼン15mLに固体材料を溶解し、25℃で再結晶化しましょう。
  7. 乾燥ジクロロメタンフラスコにジクロロメタン75mlに3-クロロ過安息香酸6.0gを含む溶液に溶解し、乾燥ジケトンの8.34グラムを加えます。
  8. 24時間、40℃で溶液を還流。
  9. Mを沈殿させ、10分間-20℃に反応混合物を冷却の-chlorobenzoic酸副産物。
  10. (濾紙を使用)を濾過によりM -chlorobenzoic酸を除去し、減圧下で溶液を濃縮します。
  11. 2-ヘプタノン200mLでビスコース、粗生成物を洗浄し、50℃で一晩真空下で沈殿物を乾燥させます。
  12. 以下の1 H NMR及びFT-IRのピークを用いて合成をモニターします。 1 H NMR(400 MHzの、CDCl 3中、δ[PPM]):4.42から4.37(DD、J = 14.2、7.4 Hzで、2H、C H 2 OC = O)、4.21から4.15(T、2H、J = 11.3ヘルツ、C H 2 OC = O)、2.80から2.75(DDT、J = 14.3、6.5、1.6ヘルツ、2H、C H 2 COO)、2.63から2.57(TT、J = 13.3、2.1 Hzで、2H、C H 2 COO)、2.04から1.93(M、4H、-C H 2 CH 2 OC = O)、1.70から1.56(M、4H、-C H 2 C H 2 COO)、1.48から1.38(M、2H、 - C H C(CH 3)2)、0.84(s、6H、C H 3 C-)。
  13. (ガオによる。27)架橋剤として(1-カプロラクトン-4-イル)プロパン(BCP)27ヘキサメチレンジイソシアネート(HDI)又は2,2-ビスのいずれかを使用して多孔質3Dエラストマー骨格の7作成

    1. HDIの0.25mLの(またはBCPの0.45 mL)および蒸留εカプロラクトンモノマーの0.24ミリリットルを添加することにより、SBC-αCLCを0.75gを用いた3アームのエラストマー混合物を調製します。 Snを60μL(10月)2を追加します。 (このステップは、2時間までかかることがあります)の代わりにHDIのBCPを使用する場合、ボルテックスを用いてSBC-αCLC及びBCPを混合し、BCPを完全に溶融し、溶解するまで140℃のオーブンに置きます。 BCPが溶解した後、オーブンと、Snの(10月)2、及び渦の外にそれを取ります。
    2. 1×4センチ金属片を切断することによって「犠牲」ニッケルフォームテンプレートを準備します。最終的なロールが、約1×1cmの金属片( 図4参照 )となるように、短い端部の一方からロール。
    3. ガラスバイアルまたはアルミホイルパックにニッケル発泡体を入れて、完全に2分間発泡体を覆うようにステップ7.1で調製した混合物を注ぎます。パスツールピペットで余分な混合物を取り除きます。 80℃のオーブンで一晩でそれを残します。
    4. アルミホイルをはがしたりガラスを破ります。カミソリの刃を用いて、ニッケル金属を露出させるために金属発泡体の周りにエラストマーを剃ります。
    5. 水100mL中の1M塩化鉄(III)(FeCl 3を)溶液を調製します。フラスコ内の泡を置きのFeCl 3溶液70mlを加えます。室温で3日間撹拌し、毎日のFeCl 3溶液を変更します。各変更の前に、0.5時間イオン水で泡をかき混ぜます。
      注:エッチング・プロセスは、通常、3日後に終了しました。フォームが柔らかく感じるまでエッチング工程が完了したことを確認するために、触覚圧縮試験を行います。触覚圧縮試験に泡抵抗は残留金属鋳型の存在を示します。
    6. ELASTをすすぎます40°Cで真空オーブンで一晩エタノールと場所とオマールフォーム。
    7. 走査型電子顕微鏡(SEM)、示差走査熱量測定(DSC)、機械的な圧縮試験、及び熱重量分析(TGA)27を使用して、材料を特徴づけます。
      注:より親水性の3D LCEを調製するために、ステップ7.5に記載の手順に従って、(LBCはまた、LCの部分を含むことを確認すること)LBCとSBCを置き換えます。

    無菌技術を使用して8 SH-SY5Y神経芽腫細胞を有するエラストマー足場の播種と培養

    1. 70%エタノール1mLで2度洗浄することによりエラストマーを滅菌します。 10分間のUV照射を行い、70%エタノール1mLで洗浄します。滅菌水1mL及びリン酸緩衝生理食塩水(PBS)1mLで二回リンス。 24ウェル培養プレート中にエラストマーを配置します。
    2. 90%のダルベッコ改変イーグル培地(DMEM)supplemを含有するSH-SY5Yための細胞増殖培地を準備10%ウシ胎児血清(FBS)および1%ペニシリン - ストレプトマイシン(ペニシリン - ストレプトマイシン)でented。
    3. 血球計数器を用いて細胞をカウントした後、増殖培地100μL(シード溶液)中に懸濁し、1.5×10 5 SH-SY5Y細胞を調製します。ドロップを形成することを確認して、エラストマーの上にソリューションを追加します。
    4. 細胞接着を促進するために、2時間、37℃で、5%CO 2で播種エラストマーをインキュベートします。増殖培地の0.5ミリリットルを追加します。 5%CO 2で37℃で再びインキュベートします。
    5. PBS 1mLで洗浄した後、培地を一日おきに変更します。

    エラストマーの9.顕微鏡イメージングを構築します

    1. 15分間、PBS中の4%パラホルムアルデヒド(PFA)を有するエラストマー上で増殖させた細胞を固定します。 PBS 3mLで5分間3回ずつ洗浄し、取り付けられたカバースリップで培養皿に固定された細胞を用いてエラストマーを置きます。
      注意:PFAは有毒です。適切な個人保護衣(PPE)を着用してください。
    2. 駅10分間PBS500μLの4' 、6-ジアミジノ-2-フェニルインドール(DAPI)の0.1%と固定したサンプル中で5分間二回PBS 1mlですすぎます。
    3. サンプルにまたがる画像スタックを取得し、DAPI蛍光と共焦点顕微鏡を使用して直ちに画像エラストマー。
      注:ここでは、画像スタックは、20X目的と60Xの対物レンズを用いて取得しました。
    4. ImageJの32を用いた光共焦点画像スタックを分析します。

Access restricted. Please log in or start a trial to view this content.

結果

このレポートは、ニッケル金属テンプレートを使用して、細胞培養のための足場としての多孔質の3D LCEの調製方法を示します。得られた3D LCEは容易細胞浸潤を可能にする複雑な相互接続チャネルネットワーク、ならびにより適切な物質移動27を示しています。これは、細胞が完全に相互接続チャネルネットワークに侵入することができ、また、LCE内?...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

液晶エラストマーは、最近、それらの刺激応答性、生体適合性細胞の足場として研究されてきました。彼らは、細胞の足場として理想的なプラットフォームであることが証明されています。しかし、新しいLCE足場を準備して設計する際に心に留めておくべき重要な要因は、多孔性です。浸出性固形物23またはガスの取り込みは、常に均質な多孔性または完全に相互接続され?...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者は、開示することは何もありません。

謝辞

このプロジェクトの財政支援のために - 著者はケント州立大学(ReMedIKSケント州での再生医療・イニシアティブのための共同研究助成金や支援を)感謝したいと思います。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
1H, 1H, 2H, 2H-perfluorooctyltriethoxysilaneAlfa AesarL16606Silanizing agent
2-bis(4-hydroxy-cyclohexyl)propaneTCIB0928Reagent
2-chlorohexanone Alfa AesarA18613Reagent
2-heptanone Sigma AldrichW254401Solvent
2-propanol Sigma Aldrich278475Solvent
3-chloroperbenzoic acid, m-CPBASigma Aldrich273031Reagent
4-dimethylaminopyridineAlfa AesarA13016Reagent
4',6-diamidino-2-phenylindole, DAPI InvitrogenD1306Nuclear Stain
5-hexynoic acid Alfa AesarB25132-06Reagent
Acetic acidVWR36289Solvent
AcetoneSigma Aldrich34850Solvent
Alcohol 200 proof ACS Grade VWR71001-866Reagent
BenzeneAlfa AesarAA33290Solvent
ε-caprolactone Alfa AesarA10299-0EReagent
ChloroformVWRBDH1109Solvent
CholesterolSigma AldrichC8503Reagent
Chromium(VI) oxideSigma Aldrich232653Reagent
Copper(I) iodideStrem Chemicals100211-060Reagent
D,L-Lactide Alfa AesarL09026Reagent
DichloromethaneSigma Aldrich320269Solvent
Diethyl ether Emd MilliporeEX0190Solvent
N,N-DimethylformamideSigma Aldrich270547Solvent
Dulbecco’s modified Eagle medium, DEME CORNING Cellgo10-013Cell Media
EthanolAlfa Aesar33361Solvent
Formaldehyde SIGMA Life ScienceF8775Fixative
Fetal bovine serum, FBS HyCloneSH30071.01Media Component
Filter paper, Grade 415, qualitative, crepeVWR28320Filtration
GlycerolSigma AldrichG5516Central node (3-arm)
Hexamethylene diisocyanate, HDISigma Aldrich52649Crosslinker
Iron(III) chloride Alfa Aesar12357Etching agent
Isopropyl alcoholVWRBDH1133Solvent
MethanolAlfa AesarL13255Solvent
N,N'-dicyclohexylcarbodiimideAldrichD80002Solvent
N,N-DimethylformamideSigma Aldrich270547Solvent
Nickel metal templateAmerican ElementsNi-860Foam template
Neuroblastomas cells (SH-SY5Y)ATCCCRL-2266Cell line
Penicillin streptomycin Thermo SCIENTIFIC15140122Antibiotics
Polyethylene glycol 2000, PEGAlfa AesarB22181Reagent
Sodium azide VWR97064-646Reagent
Sodium bicarbonateAMRESCO865Drying salt
Sodium chlorideBDHBDH9286Drying salt
Sodium phosphate dibasic heptahydrateFisher ScientificS-374Drying salt
Sodium phosphate monobasic monohydrateSigma AldrichS9638Drying salt
Sodium sulfateSigma Aldrich239313Drying salt
TetrahydrofuranAlfa Aesar41819Solvent
Thiosulfate de sodiumAMRESCO393Drying salt
Tin(II) 2-ethylhexanoateAldrichS3252Reagent
TolueneAlfa Aesar22903Solvent
TriethylamineSigma Aldrich471283Reagent
TrypsinHyCloneSH30042.01Cell Detachment
Olympus FV1000

参考文献

  1. Khor, E., Lim, L. Y. Implantable applications of chitin and chitosan. Biomaterials. 24 (13), 2339-2349 (2003).
  2. Chung, H. J., Park, T. G. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 59 (4-5), 249-262 (2007).
  3. Yakacki, C. M., Gall, K. Shape-Memory Polymers for Biomedical Applications. Shape-Memory Polymers. 226, 147-175 (2010).
  4. Agrawal, A., et al. Stimuli-responsive liquid crystal elastomers for dynamic cell culture. J. of Mat. Res. 30 (4), 453-462 (2015).
  5. Agrawal, A., Yun, T. H., Pesek, S. L., Chapman, W. G., Verduzco, R. Shape-responsive liquid crystal elastomer bilayers. Soft Matter. 10 (9), 1411-1415 (2014).
  6. Sharma, A., et al. Biodegradable and Porous Liquid Crystal Elastomer Scaffolds for Spatial Cell Cultures. Macromol. Biosci. 15 (2), 200-214 (2015).
  7. Yakacki, C. M., et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. RSC Adv. 5 (25), 18997-19001 (2015).
  8. deGennes, P. G., Hebert, M., Kant, R. Artificial muscles based on nematic gels. Macromolecular Symposia. 113, 39-49 (1997).
  9. Fleischmann, E. -K., Zentel, R. Liquid-Crystalline Ordering as a Concept in Materials Science: From Semiconductors to Stimuli-Responsive Devices. Angew. Chem. Int. Ed. 52 (34), 8810-8827 (2013).
  10. Finkelmann, H., Kim, S. T., Munoz, A., Palffy-Muhoray, P., Taheri, B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 13 (14), 1069-1072 (2001).
  11. Artal, C., et al. SHG characterization of different polar materials obtained by in situ photopolymerization. Macromolecules. 34 (12), 4244-4255 (2001).
  12. Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P., Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3 (5), 307-310 (2004).
  13. Yamada, M., et al. Photomobile polymer materials: Towards light-driven plastic motors. Angew. Chem. Int. Ed. 47 (27), 4986-4988 (2008).
  14. Ohm, C., Brehmer, M., Zentel, R. Liquid Crystalline Elastomers as Actuators and Sensors. Adv. Mater. 22 (31), 3366-3387 (2010).
  15. Fleischmann, E. -K., et al. One-piece micropumps from liquid crystalline core-shell particles. Nat. Commun. 3, (2012).
  16. Herzer, N., et al. Printable Optical Sensors Based on H-Bonded Supramolecular Cholesteric Liquid Crystal Networks. J. Am. Chem. Soc. 134 (18), 7608-7611 (2012).
  17. Lockwood, N. A., et al. Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells. Adv. Funct. Mater. 16 (5), 618-624 (2006).
  18. Sharma, A., et al. Effects of structural variations on the cellular response and mechanical properties of biocompatible, biodegradable, and porous smectic liquid crystal elastomers. Macromol. Biosci. , In press (2016).
  19. Bera, T., et al. Liquid Crystal Elastomer Microspheres as Three-Dimensional Cell Scaffolds Supporting the Attachment and Proliferation of Myoblasts. ACS Appl. Mater. Interfaces. 7 (26), 14528-14535 (2015).
  20. Bera, T., Malcuit, C., Clements, R. J., Hegmann, E. Role of Surfactant during Microemulsion Photopolymerization for the Creation of Three-Dimensional Liquid Crystal Elastomer Microsphere Spatial Cell Scaffolds. Front. Mater. 3 (31), (2016).
  21. McKee, C. T., Last, J. A., Russell, P., Murphy, C. J. Indentation Versus Tensile Measurements of Young's Modulus for Soft Biological Tissues. Tissue Eng. Part B Rev. 17 (3), 155-164 (2011).
  22. Kung, C. -C., et al. Preparation and characterization of three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for hydrogen peroxide based electrochemical biosensors. Biosens. Bioelectron. 52, 1-7 (2014).
  23. Amsden, B. Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter. 3 (11), 1335-1348 (2007).
  24. Sinturel, C., Vayer, M., Morris, M., Hillmyer, M. A. Solvent Vapor Annealing of Block Polymer Thin Films. Macromolecules. 46 (14), 5399-5415 (2013).
  25. Riboldi, S. A., et al. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds. J. Biomed. Mater. Res. A. 84 (4), 1094-1101 (2008).
  26. Chung, S., Moghe, A. K., Montero, G. A., Kim, S. H., King, M. W. Nanofibrous scaffolds electrospun from elastomeric biodegradable poly(L-lactide-co-epsilon-caprolactone) copolymer. Biomed. Mater. 4 (1), 9(2009).
  27. Gao, Y. X., et al. Biocompatible 3D Liquid Crystal Elastomer Cell Scaffolds and Foams with Primary and Secondary Porous Architecture. ACS Macro Lett. 5 (1), 14-19 (2016).
  28. Lenoir, S., et al. Ring-opening polymerization of alpha-chloro-is an element of-caprolactone and chemical modification of poly(alpha-chloro-is an element of-caprolactone) by atom transfer radical processes. Macromolecules. 37 (11), 4055-4061 (2004).
  29. Younes, H. M., Bravo-Grimaldo, E., Amsden, B. G. Synthesis, characterization and in vitro degradation of a biodegradable elastomer. Biomaterials. 25 (22), 5261-5269 (2004).
  30. Donaldson, T., Henderson, P. A., Achard, M. F., Imrie, C. T. Chiral liquid crystal tetramers. J. Mater. Chem. 21 (29), 10935-10941 (2011).
  31. Palmgren, R., Karlsson, S., Albertsson, A. C. Synthesis of degradable crosslinked polymers based on 1,5-dioxepan-2-one and crosslinker of bis-epsilon-caprolactone type. J. Pol. Sci. A Polym. Chem. 35 (9), 1635-1649 (1997).
  32. Rasband, W. S. ImageJ. , National Institutes of Health. Bethesda, Maryland, USA. Available from: http://imagej.nih.gov/ij/ (2015).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

122 3D

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved