がん転移臨床生体内で追跡のためのプロトコルについて述べる。それは、非侵襲的 [18F] テトラフルオロホウ酸-ペット、および合理化された前のヴィヴォ確認のため蛍光蛋白質によって検出されたナトリウム ヨウ化シンポートを組み合わせること放射性核種蛍光レポーターに基づいています。メソッドは前臨床生体内で細胞を腫瘍生物学を越えて追跡の適用です。
転移はほとんどの癌の死の責任があります。広範な研究にもかかわらず、転移を支配する複雑なプロセスのメカニズムの理解は不完全なまま。In vivoモデルは転移研究の重要が、洗練を必要とします。非侵襲的体内自然転移を追跡イメージングが可能になりましたが、長時間の観察と高感度が必要ですそのまま挑戦。我々 は、縦結合核種と蛍光全身生体内でイメージ投射自然転移、腫瘍の進行を追跡するためのアプローチについて説明します。このレポーター遺伝子の方法論では、(FP) の蛍光蛋白質に溶けるナトリウム ヨウ化シンポート (NIS) を採用しています。がん細胞は蛍光活性化細胞ソーティングに基づく選択続いて安定エクスプレス NIS FP に設計されています。対応する腫瘍モデルはマウスで確立されます。NIS FP 発現がん細胞が追跡される非侵襲的体内ポジトロン断層法 (PET) による全身レベルで NIS を使用してラジオト レーサー [18F] BF4-。ペットは現在最も敏感な生体内イメージング技術は、このスケールで利用可能な信頼性の高いかつ絶対的な数量化できます。現在のメソッドはタイム ポイントの変化の転移評価のため安楽死させた動物の大規模なコホートに依存またはほとんど定量化可能な 2 D 画像に依存します。この方法の利点は、: (i) 高感度非侵襲体内3 D ペット イメージングと定量、(ii) 自動 PET トレーサー生産、(iii) 繰り返しイメージング オプションにより必要な動物の数を大幅に削減 (iv)。良い統計データと (v) 蛍光顕微鏡やフローサイトメトリーによる組織中のがん細胞の確認前のヴィヴォの組み込みオプションを提供する後続のイメージング セッションから組み合わせられたデータの取得。このプロトコルではルーチン NIS FP 与えられる非侵襲体内のがん細胞を用いた追跡結果体内のペット/CT および前のヴィヴォの確認に必要なすべての手順をについて説明します。体内局在化、拡張、細胞集団の長時間監視がされるたびに、このプロトコルからがん研究を超えてアプリケーションがあります。
転移性疾患は、ほとんどの癌関連死亡1の原因です。転移プロセスに広範な研究にもかかわらず動物モデルにおける癌転移の信頼性のある監視は達成するために難しいです。全身イメージング技術とマルチ モーダル イメージング技術の最近の進歩は、非侵襲的体内細胞を2,3,4、5の追跡を有効にしています。非侵襲的存在、分布、数量、および細胞の生存率を監視するためのツールとして、繰り返し生きている動物や人間の後者を使用されることができます。
ここで説明したメソッドの目的は、長手方向と非侵襲的生活齧歯動物腫瘍モデルで 3 D で癌細胞を追跡することです。このメソッドを使用して、研究者は正確に 3 D で転移を含む腫瘍進行を定量化することができます。伝統的な非イメージング ベースの手法と比較して、この方法は動物数が大きく減少に定量的なデータの取得を提供しています。このメソッドのもう一つの特徴は、組織またはフローサイトメトリーの3,6で合理化された下流前のヴィヴォ分析履歴収穫された組織細胞の生体内イメージングの相関できます。
このメソッドの開発のための理論的根拠は、監視および齧歯動物の腫瘍モデルで全体に転移プロセスの定量化のため生体内でツールを提供するためにだった。重要なは、動物間の可変性を減らす同時にしながら動物の使用を最小限に抑えるために設計されました。縦方向の非侵襲的な全身撮像は見事どの自体の時間とその発生の場所を正確に予測することは困難です、転移性の伸長に通知する適しています。全身 3 D イメージングしたがって、メソッド開発の中心にされています。全身体内間スケールのギャップにイメージングと下流ex vivo組織学的確認、マルチ スケール デュアル モード放射性核種蛍光レポーター イメージング手法が潜在的な採用3、 6。
ポジトロン断層法 (PET) は最も敏感な 3 D 全身イメージング技術で優れた深さの浸透と絶対定量7の解像度を提供する現在利用可能な < 1 mm8,9。現在、臨床細胞を放射性核種イメージングによる全身レベルで追跡は 100 万のボリュームあたり 1,000 〜 細胞の密度に細胞細胞3,6準ミリ波領域での解像度を検知できます。生体顕微鏡とは異なり単一の広がりの癌細胞を検出できないが、それは外科的処置 (例:ウィンドウ室) を必要としない、小さな視野と低組織浸透および散布図ではなくに制限はないです。生物発光イメージングは、散布、光吸収の問題、貧困層の深さの浸透に関連付けられているは、数量2でその結果を厳しく制限、安価な代替を提供します。全身蛍光は、3 D 画像の獲得のために使用されていますが、それは発光または放射性核種の技術のための2と比較して大いにより少なく敏感。それにもかかわらず、蛍光フローサイトメトリーまたは顕微鏡による前のヴィヴォ下流組織解析を実行する機会を提供しています。後者は、巨視的全身撮像 (mm 解像度) と蛍光顕微鏡による組織分析 (μ m 解像度)3のスケール ギャップを閉じます。したがって、放射性核種と蛍光のモダリティは全身レベルから (サブ-) 細胞スケールに至るまで、お互いを補完します。
レポーター遺伝子のイメージングは、長期細胞転移研究の必要に応じて、トラッキングに最適です。このアプリケーションで直接細胞ラベリング (i) ラベル希釈を受けませんされ、時間の追跡に限らずに優れてがおり (ii) より生きているセル番号を反映します。その結果、全身細胞トラッキングは、トレーサブルな細胞増殖や生体内での展開、たとえば癌で3、6幹に奇形腫形成の検出のための研究のアプリケーションに特に役立ちます細胞の研究、または免疫の定量化のための拡張5セルします。
様々 な放射性核種を用いたレポーター遺伝子は、利用可能な2です。単純ヘルペスのウイルス HSV11 チミジンのキナーゼ (HSV1-tk)、ナトリウム ヨウ化シンポート (NIS) などのトランスポーターやノルエピネフリン ・ トランスポーター (NET) などの酵素だけでなく、細胞表面受容体、ドーパミン D2 受容体 (などが挙げられますD2R)。NIS は、たとえば甲状腺ホルモン10以降の合成甲状腺濾胞細胞でのヨウ素の取り込みを積極的に仲介するグリコの膜貫通タンパク質です。このプロセスは na+ symport し Na+によって維持されている細胞ナトリウム勾配に依存している/K+-atp アーゼ11。したがって、NIS は生活に即したヨウ化/ルコース取り込みがアクティブな Na+にリンクされている、他の記者よりも数字をセル トランスポーターが存在するだけではなく/K+のグラデーション。における放射性が伝統的に使用されている NIS 用。細胞追跡のために優れた6代謝甲状腺にはめがない別の NIS ラジオト レーサーを報告されています。今回はペット ラジオト レーサー [18F] テトラフルオロホウ酸を開発した ([18F] BF4-)12,13中における放射性6と比較して優れた体内動態を示しています複雑な放射化学設備を必要とせず高特定活動14で利用できます。[18F]BF4-は、2 つの異なる方法で合成できます。最初の方法は、非放射性19F BF4-放射性18F12の同位体交換に基づいています。2 番目のメソッドは非放射性ホウ素三フッ化14に18F を追加、です。後者の方法は高い特定活動14をもたらすために報告された、臨床イメージングのための選択方式です。
NIS は、甲状腺組織で高い表現されます。また、胃と同様、唾液、涙、授乳中の乳腺、甲状腺10と比較して低いレベルで表されます。したがって、他の部位で優れたコントラスト イメージングは、NIS を使用して実現できます。それはまた高い相同性ヒト、ラットし、マウスの10。さらに、非甲状腺細胞における異所性の NIS 発現時に毒性の報告もありません。重要なは、NIS も関係付けられていないホスト免疫反応、人間も齧歯動物のもと。NIS は、プロモーター活動15,16,17と遺伝子発現18,19,20,21,22 を測定するレポーター遺伝子として使用されています ,23複数の異なるコンテキストで。また、非侵襲的イメージング遺伝子療法のベクトル24,25, および心臓4、造血26炎症の5、および神経研究27のセルを追跡するために使用されています。最近では、NIS も使用されていますレポーター遺伝子として3,6生体内にがん転移を追跡します。
要約すると、このメソッドの前の技術上の主な利点は、: (i) 高感度非侵襲的 3次元体内局在と転移性の定量化を広める、(ii) [18F] BF4-の生産を自動化高モル活動、(iii) 縦画像、(iv) の改良された統計的なデータ、結果その後のイメージング セッションから対データの取得, 順番に動物の使用、(v) を削減を通して必要な動物を大幅に削減フローサイトメトリーまたは蛍光顕微鏡による組織中のがん細胞の確認前のヴィヴォの組み込みオプション。
このプロトコルは、イギリス (英国) の法律およびローカル倫理審査パネルで設定のすべての要件を満たしています。次のこのプロトコルを確保するときの手順はまた国の法律およびローカル倫理審査パネルによって決定の要件を満たします。放射能を含むすべての実験は、立法およびローカル ルールに準拠して、安全に行われますを確認します。
1. 工学と放射性核種蛍光融合記者 NIS FP を表現するがん細胞の特性
注: わかりやすくするため、mEGFP A206K は"GFP"、このプロトコルの後続のセクションで「RFP」として mCherry と省略されます。
2.生体内で腫瘍モデルの確立
3. [18 F] BF 4-自動ルコース合成 (ARS) プラットフォームを使用しての生産。
注: ここでは、三フッ化ホウ素に18F 添加法に基づく自動 [18F] BF4-合成説明です。広く利用可能なアルス プラットフォームのユーザー (材料の表を参照) はこのプラットフォーム (補足ファイル) で自動シーケンスを実行するために必要な対応する拡張マークアップ言語 (XML) ファイルをダウンロードできます。図 1に示すようにカセットのレイアウトの詳細については、XML シーケンス ファイル (テーブル 2) その他の自動化されたプラットホームへの変換をサポートするための各手順の詳細な説明だけでなく、(表 1) で提供されます。
4. nanoPET/CT による細胞のin vivoイメージング NIS FP を表現します。
5.体内データ解析
6 ex vivo解析。
記載されているダウン ストリーム解析を実行: (i) 動物解剖やルコース組織分布、および (iii) 組織の測定 (ii) (iv) の中に蛍光がん細胞 (原発腫瘍および転移) を含む器官の蛍光癌の臓器のフローサイトメトリー評価。
最初のステップでは、関心の癌細胞の遺伝子工学が必要です。ここでは、転移性マウス炎症 4T1 乳癌細胞とひと転移 MDA MB 231 セル レンチ ウイルス DNA エンコード GFP NIS または NIS RFP を運ぶ粒子が表示されますのレンチ ウイルス伝達の結果。伝達効率は癌細胞 (図 2 a、左列) の間で変化。ただし、すべての結果は、癌細胞ラインは純度 (図 2 a右) を FACS で選択されてを導入しました。共焦点蛍光顕微鏡 (図 2 b) NIS の正しい膜局在を示した-NIS 与えルコース取り込みを用いて定量化 FPs NIS FP 関数 (図 2-2E) NIS 機能を発揮し、。特異性。特に、4T1 間で有意差。NIS GFP と 4T1。式が似かよっている NIS NIS RFP 発現細胞 (図 2) が見つかりました。
次のセル行特性評価における体外腫瘍モデルは新しく生成された追跡可能な癌細胞とセットアップされました。たとえば、4T1。NIS GFP 腫瘍モデルでは、炎症性乳癌のためのモデルを示しています (図 3)。担腫瘍動物縦全身 pet における転移拡散 (図 3 b) を含む腫瘍進行に関する通知。PET 検査 [18F] BF4-は、イメージングのため必要があり、イメージング セッションあらゆるペットの朝で生産された新鮮な。[18F] BF4-の合成を説明したアルス メソッドを使用して行った。通常、~1.6 GBq 18F-は入力として使用され 〜 244 MBq [18F] BF4- 40.5±3.9 分 (N = 17) を得られます。製品はラジオ薄層クロマトグラフィーまたはイオン クロマトグラフィーによって分析され、94.7±1.4% の放射化学的純度を示した。放射の収量 (減衰補正) 19.4±4.0% であった。
腫瘍接種後 19 日に原発腫瘍は pet、明らかにされたが、転移が見つかりません。10 日後 (29 日)、同じ担癌マウスが再イメージ化と遠隔転移 (肺転移、様々 な鼠径部や腋窩リンパ節への転移) のすべての動物のさまざまな場所で識別されました。図 3の例は肺にいくつか明確に識別し、定量化可能な結節を有する広範な肺転移を認めた (図 3 b-3E)。また、動物は、鼠径および両方の腋窩リンパ節への転移と同様、腹膜壁に腫瘍地域への拡がりを提示しました。個々 (図 3 e) 肺転移 %id 値が大きく違っているが、基になる転移結節の占領のボリュームも 。対照的に、音量正規化 %ID/mL 値 (図 3E) はより均一だった。今回は似たような開発段階 (すなわち日 19 と 29 の間で異なった転移の理解図 3 b)。対照的に、原発腫瘍の正規化された %ID/mL 値は肺転移のためのそれらより低いに沿って進行し、他の細胞型 (間質細胞、免疫細胞) の流入を含むを改造するより多くの時間を持っていた腫瘤であります。、特に炎症性乳がんのこのモデルに。
リンパ節確実に収穫され、同時に癌結節コンテンツ (評価など小さな深部臓器体内画像と癌細胞 (蛍光ライトの下の動物の解剖時に目に見える) の蛍光に導かれて図 4 a)。動物の解剖時に蛍光シグナルは、腫瘍細胞の存在を示していた、この分類は、収穫された組織の放射能測定前のヴィヴォを伴っていたことを確認することが重要だった。図 4 bは、転移を伴う提示すべての 3 つの動物の間で様々 な組織で得られた標準的な吸収値 (SUV) を示しています。甲状腺や唾液腺など内生 NIS 表現器官 (収穫結合) または胃も予想される高いルコース吸収を示した。また、この NIS FP アプローチは、組織 (図 4) の中に簡単ながん細胞の特定を許可しました。この蛍光抗体法により組織のサンプル データは、4T1 の腫瘍新生血管を示した。NIS GFP 腫瘍モデル。このデータはまた、腫瘍の細胞膜に主に存在していた NIS GFP レポーターも細胞体内(図 4)、それによって取り込み結果の検証を示した。
図 1。[18F] BF4-経由三フッ化フッ素 18 をホウ素添加法の生産のための自動ルコース合成プラットフォームの設定の詳細設定します。試薬名は、スキームでそれぞれのチューブに印刷されています。QMA は四級アンモニウム塩陰イオン交換の略称であり、使用される固体相クロマト グラフ分離材料を示します。詳細は、表 1 および 2 で利用できます。この図の拡大版を表示するのにはここをクリックしてください。
図 2。GFP NIS または NIS RFP を安定に発現する癌細胞の典型的な特性の結果。(A)示された細胞が GFP NIS または NIS RFP の転送のレンチを使用して行われました。左の列はそれぞれの親細胞と比較して (緑色または赤色蛍光) 導入された人口を示しています (灰色; 4T1 と MDA MB 231 セル、それぞれ)。パーセント表示は伝達効率フローサイトメトリーによって決定されます。右側の列は、左の列に混合集団の FACS 浄化後フローサイトメトリー解析フローの結果を示しています。すべての細胞は、ことがわかった > 99% の純粋な NIS 発現細胞を (フローサイトメトリー) によって示されます。(B)浄化された細胞の共焦点蛍光顕微鏡それぞれの細胞での GFP NIS または NIS RFP プラズマの膜のローカリゼーションを示しています。WGA Alexa633 は、膜マーカーとして使用されました。(C, D)新しく示されたに表現された NIS FP 蛋白質の機能の検証には、がん細胞が生成されます。NIS 関数は、ルコース99 mTcO4- (100万個につき 50 kBq) を用いて測定しました。コントロールと親細胞が前に、とアッセイ (特異性制御) 中に NIS co 基板過塩素酸と扱われた融合レポーター発現細胞だけでなく、使用されました。結果は、NIS FP 関数とすべての細胞の特異性を明確に示します。(E) 4T1 の機能検証。NIS FP 細胞を nis、ラジオト レーサーとして [18F] BF4-を用いたします。他のすべての条件は、(C) と同じでした。結果 (図 2と E)、両方のラジオト レーサー両方 4T1 由来細胞株により得られた非常に類似の相対的な吸収が体外機能解析のための両方の交換の使用を正当化する重要なは、NIS FP 発現細胞株。この図の拡大版を表示するのにはここをクリックしてください。
図 3。軸受、4T1 マウスにおける [18F] BF4--ペット/CT イメージングを用いた追跡転移の代表的な結果です。NIS GFP 腫瘍。(A) 100 万 4T1。NIS GFP の細胞が注入され 5-6 週齢 BALB/c CanN.Cg Foxn1nu/Crl マウスの乳腺の脂肪パッドとキャリパーを使用して時間をかけて腫瘍の成長が続いた。癌細胞の GFP 蛍光により原油の視覚的識別/成長評価は可能で蛍光トーチおよび適切なフィルター ガラス (インセットを参照) を使用するもでした。(B/左)19 日ポスト腫瘍接種原発腫瘍 (黄色点線) 明確にない転移が確認されました。表示されるイメージは、PET 画像の最大強度投影法 (MIP) です。内因性の NIS 信号 (白記述子) は記録されたまた、すなわち甲状腺・唾液腺 (Th + SG)、胃 (S) と、非常に低いレベル、乳腺と涙の腺の一部。膀胱 (B) 信号はトレーサー排泄に由来します。(B/右)日 29 ポスト腫瘍接種転移が明確に識別された: リンパ節転移 (ILN、AxLN; 黄色の矢印) と同様、肺 (黄色の点線) に転移。表示されるイメージは、ペット/ct の MIP です。原発腫瘍 (黄色点線) はこの時点で球状の形状だけでなく、育ったが、腹腔の壁にも侵攻していた。(C)大津しきい値処理技術の 3 D 実装籏; の三次元表面のレンダリングを有効にこれらはペット MIP とを重ね合わせています。肺転移は、赤白、転移の腋窩リンパ節、鼠径リンパ節転移黄色で、ターコイズの腹膜壁に侵入原発腫瘍に表示されます。(D)個々 の肺転移を示す (B/右) ペット/CT の MIP の爆発のイメージ。(E)籏ルコース取り込みに 3 D 画像 (%id) から定量化され、それぞれボリューム (%ID/mL) で規格化しました。個々 の肺転移は (D) の番号に対応します。この図の拡大版を表示するのにはここをクリックしてください。
図 4。前のヴィヴォNIS FP 担癌マウスからアクセスできるデータの典型的な例です。(A)組織が下流解析の収穫時に NIS FP 表現する腫瘍細胞の蛍光特性は動物解剖の指導の指標として提供しています。手本、図 3、動物から組織としてすなわちいくつかの転移病変を有する肺とリンパ節転移陽性 2 つが表示されます。日光写真だけでなく、蛍光画像が表示されます。蛍光イメージは青い光励起下 (450±10 nm バンドパス フィルター) 緑色発光フィルター (530±30 nm バンドパス フィルター) とカメラのレンズの前に置かれたが、昼間の画像として同じカメラで撮影されました。(B)ラジオト レーサー 4T1 と動物のさまざまな器官 ('体内') に分布。NIS GFP 腫瘍 (N = 3; 29 日腫瘍接種 5 MBq [18F] BF4-)。(SUV) の値が計算された標準的な摂取量と値 > 1 は、それぞれの臓器の検査の特異的蓄積を示します。データは癌組織、すなわち原発腫瘍、(イメージングと蛍光ライトの下郭清によって識別された) とリンパ節転移、肺特定検査の取り込みを表示 (切開し全体として個々 の転移を分離することがなく)、同様、NIS、すなわち甲状腺、唾液腺、胃の臓器が内生的表現。(C) 図 3に示すように、同じマウスから原発腫瘍の蛍光組織。原発腫瘍は収穫、10 月に埋め込まれていると凍結切片 (10 μ m) をされる前に、染色処理します。NIS GFP 発現がん細胞は、抗体染色を必要とせず直接識別されました。血管がマウス PECAM-1/CD31 に対するウサギ抗体で染色した (2 μ G/ml) と Cy5 標識ヤギ抗うさぎ抗体。核は 2'-(4-ethoxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5'-Bi-1H-benzimidazole (1 μ g/mL) に染まっていたし、含む 2.5% (w/v)、antifade として鎖置換 Dabco ポリ (ビニル アルコール ・酢酸ビニル) に取り付けられたサンプル。設定を用いた共焦点顕微鏡共焦点画像が得られた 2'-(4-ethoxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5'-Bi-1H-benzimidazole、GFP および cy5 の組合せのための適切な。これらの例のデータでは、4T1 はっきり示しています。NIS GFP 腫瘍の血管がまたその血管新生異なりますその範囲 (参考:左上中央下)。また、NIS GFP レポーター主に存在する腫瘍細胞は、生体内で(インセット) のプラズマ膜により体外に取り込み結果の検証を示します。この図の拡大版を表示するのにはここをクリックしてください。
FASTlab マニホールド バルブ | 試薬、溶媒、カートリッジやチューブ * | 詳細 | ||
V1 | [18O] H2O 廃液ボトルにシリコン チューブ | 14 cm | ||
V2 | 0.9 %nacl 水溶液、750 μ L | 11 mm のバイアル | ||
V3 | シリンジ S1 | 1 mL | ||
V4 | 陰イオン交換カートリッジ C1、前 1 M の NaCl (10 mL) と H2O (10 mL) 付き | 例えばSep-pak アクセル プラス QMA プラス光 (水、猫。違います。WAT023525) | ||
V5 | 陰イオン交換カートリッジ C1 にシリコン チューブ | 14 cm | ||
V6 | [18O]H2O/18F 入口貯水池 | 最大 5 mL | ||
V7 | 原子炉容器 (左; ガス入口) にシリコン チューブ | 14 cm | ||
V 型 8 気筒 | 原子炉容器 (中央ポート; 液体入口/出口) にシリコン チューブ | 14 cm | ||
V9 | 閉鎖 | |||
V10 | 閉鎖 | |||
V11 | 注射器 S2 | 5 mL | ||
V 型 12 気筒 | 15-クラウン-5、800 μ L MeCN で 46 mg | 11 mm のバイアル | ||
V13 | Trifluoroborate ジエチル etherate、850 μ L で 0.14 μ L MeCN (BF3希薄 14 μ L。1 mL MeCN で OEt の2 。この解決策 MeCN 850 μ L の 10 μ L を希釈する)。 | 13 mm のバイアル | ||
V14 | 0.9 %nacl 水溶液、1 mL | 13 mm のバイアル | ||
V15 | 水バッグ スパイク | |||
V16 | アセトニ トリル (MeCN) 1.5 mL | 13 mm のバイアル | ||
V17 | アルミナ中立的なカートリッジ C2 にシリコン チューブ | 14 cm | ||
V18 | アルミナ中立的なカートリッジ H2O (10 mL)、アセトン (10 mL) と空気 (20 mL) 完備の中古 C2 | 例えばSep-pak アルミナ N プラス光 (水、猫。違います。WAT023561) | ||
V19 では | 陰イオン交換カートリッジ C3 にシリコン チューブ | 14 cm | ||
V20 | 陰イオン交換カートリッジ 1 M NaCl (10 mL) と H2O (10 mL) 完備の中古 C3 | 例えばSep-pak アクセル プラス QMA プラス光 (水、猫。違います。WAT023525) | ||
V21 | シリコーン チューブ コレクション バイアルを | 40 cm | ||
V22 | 閉鎖 | |||
V23 | 閉鎖 | |||
V24 | 注射器 S3 | 5 mL | ||
V25 | 原子炉容器 (右側; 真空ポート) にシリコン チューブ | 40 cm | ||
* 注: プラスチックのスパイクのための 11 mm バイヤルと 13 mm バイアル容積は約 0.35 mL と 0.4 mL、それぞれ。そのため、原子炉に転送試薬の実際の金額は多少異なります。このメソッドで示されるすべての数量は、各試薬バイアルで導入実績を参照してください。 |
表 1。三フッ化フッ素 18 をホウ素添加法による自動 [18F] BF4-合成のカセット レイアウトの説明(参考: 図 1).
シーケンスの手順 | コメント | ||||
[1-2] | システムを加圧し、N2とマニホールドをフラッシュ | ||||
[3-15] | H2O (V15) リンス シリンジ S3 2 回フラッシュ N2マニホールド | ||||
[23-16] | 各バイアル間 N2とマニホールドをフラッシュ位置が V12、V13 ・ V14 V16 試薬バイアルを加圧し | ||||
[24-26] | 活動の入口 (V6) を開く | ||||
18f. を含むバイアルを接続します。総容積は > 5 mL は途中で針バイアルを続行する前に挿入のみ。 | |||||
[39-27] | すぐ活動口 (V6)、トラップ18F QMA カートリッジ C1 (V5) [18O] H2O の廃液ボトル (V1) を収集します。総容積が > 5 mL の場合ステップ 37、26 のステップは、完全に18F、バイアルに針を挿入する戻り値でシーケンスを一時停止し、プロセスを再開します。 | ||||
[40] | [18O] H2O 廃液ボトル (V1) を閉じて、N2とマニホールドをフラッシュ | ||||
[41] | 加圧位置 V2 で溶離液バイアル | ||||
[42-44] | 原子炉バルブ V8 を開き、吸引シリンジ S1 に V2 から溶離液 | ||||
[45-50] | 溶出が QMA カートリッジ C1 原子炉 (V8) をシリンジ S1 から塩水を使用して、原子炉の温度を 90 ° C に設定 | ||||
[51] | QMA カートリッジ C1 N2をフラッシュし、原子炉の温度 105 ° C を増加 | ||||
[52-53] | V16 から注射器 S2 にアセトニ トリルを引く | ||||
[54-57] | シリンジ S2 から原子炉 (V8) にアセトニ トリルを転送します。 | ||||
[58-60] | 5 分原子炉 (V7) N2の流れと溶媒蒸発させなさいのための 120 の ° c の炉を熱します。 | ||||
[61-65] | 温度 105 ° C、N2乾燥シリンジ S1 に設定します。 | ||||
[66-69] | V13 から S2 の注射器に 15 クラウン 5 ソリューションを引く、原子炉の温度を 120 ° C 増加 | ||||
[70-71] | 105 ° C に温度を減らし、N2とマニホールドをフラッシュ | ||||
[72] | 5 分間 (セット、温度 40 ° C) 原子炉を冷却します。 | ||||
[73-78] | 原子炉の温度を 80 ° C に設定、15 クラウン 5 ソリューションをシリンジ S2 から原子炉 (V8) に転送 | ||||
[79-81] | BF3を描画します。シリンジ S2 に V14 から OEt2ソリューション | ||||
[82-87] | BF3に転送します。原子炉 (V8)、S2 の注射器から OEt2ソリューション 1 N2原子炉行をフラッシュします。 | ||||
[88] | フラッシュ N2マニホールド | ||||
[89] | 5 分間反応、RT に戻り温度 | ||||
[90-95] | S2 の注射器に反応混合物 (V8) を転送します。 | ||||
[96-104] | シリンジ S3 にアルミナ N カートリッジ C2 で反応混合物を渡す | ||||
[105] | フラッシュ N2マニホールド | ||||
[106-109] | S2 の注射器に戻す反応混合物 | ||||
[110-112] | 空の注射器 S3、S2 反応混合物を希釈して注射器に H2O (V15) を描く | ||||
[113-115] | QMA カートリッジ C3 に反応混合物をロードします。 | ||||
[116-118] | シリンジ S2 に H2O (V15) を描く | ||||
[119-124] | リンス H2O シリンジ S2 からの原子炉 (V8) シリンジ S2 に洗浄液を吸引します。 | ||||
[125-128] | C2 と C3 のカートリッジを洗浄液を渡す | ||||
[129-130] | カートリッジと N2とマニホールドを乾燥します。 | ||||
[131-136] | 洗浄シリンジ S1 H2O (V15) | ||||
[137-142] | 洗浄シリンジ S2 H2O (V15) | ||||
[143] | フラッシュ N2マニホールド | ||||
[144-147] | シリンジ S2 に H2O (V15) を描く | ||||
[148-151] | シリンジ S2 から QMA カートリッジ C3 H2O をフラッシュします。 | ||||
[152-153] | QMA カートリッジ C3 N2を乾燥し、N2とマニホールドをフラッシュ | ||||
[154-157] | 溶出が QMA カートリッジ C3 0.9 %nacl (V14) S3 の注射器に | ||||
[158-161] | シリンジ S3 からコレクション バイアル (V21) に製品を転送します。 | ||||
[162-163] | コレクション バイアル (V21) N2 QMA カートリッジ C3 にフラッシュします。 | ||||
[164-166] | フラッシュ N2マニホールド | ||||
[167-170] | フラッシュ カートリッジ C2 と C3 (ボトルを無駄) が N2マニホールド | ||||
[171] | フラッシュ コレクション チューブ (V21) N2 |
表 2。シーケンスの XML ファイルに手順の説明です。
がん細胞追跡可能な生体内でこのメソッドによってレンダリングする最初のステップは、エンジニア リングして NIS FP 融合記者を表現する必要があります。融合記者の蛍光タンパク質の蛍光タンパク質を oligomerizing 人工記者クラスタ リング、その機能に悪影響につながることが非常に重要です。(Monomerizing の突然変異 A206K36,37) と mEGFP、mTagRFP、mCherry などの実績のある単量体蛍光タンパク質を用いた成功を収めています。NIS は、人間のすることができますいずれかまたはマウス由来 (hNIS または msNIS) 実験と癌モデルの目的によって異なります。伝達効率は一般的に異なるがん細胞によって異なります。ただし、生成された癌細胞は伝達条件の最適化の必要性を減らす、このプロトコルで FACS で精製後。感染の高い多重度を持つトランスダクションの複数構築統合ゲノムは高い構築式のみならずより不要な/無秩序なゲノムの変更が発生する可能性がありますので、常にお勧めではありません。したがって、式 (フローサイトメトリーによる監視) の安定に成長し、FACS によってのみ優秀なクローンの並べ替えを避けるポリクローナルの導入された細胞を知らせることが重要です。表示も非記者機能における機能検証重要なこれらの細胞は、生体内で実験用する必要があります前に。ウイルスの遺伝子配達に最近開発された代替は遺伝子編集技術38、ウイルスの統合サイトのより詳細な制御を提供しています。式を用いたフローサイトメトリー法と免疫ブロットは、重要です。フローサイトメトリーにより時間をかけてレポーター発現レベルにずれがあるかどうかを調べる例の単一セルの母集団データの取得ができます。それは細胞が表面または全体の NIS に対する抗体で染色もしない限り FP 部位のみに依存します。フローサイトメトリーは、融合記者整合性には通知しません。対照的に、免疫ブロットを融合記者の整合性に報告します。NIS と FP の分子量を追加して新しく、選ばれた NIS FP. 共焦点蛍光顕微鏡実証融合記者の共存すべてプラズマ膜マーカー小麦胚芽凝集素と予想される分子量を決定する必要があります。細胞を作った。これは蛋白質のほとんどの予想される携帯電話位置し後続機能検証のゴーサインのマイルス トーンが示されています。/いいえ最小限 NIS FP はこの細胞ライン、または影響を及ぼす融合記者の潜在的な変異の融合記者と細胞生物学的問題を示すこのプラズマ膜 (例えば内部の細胞コンパートメントでのみ)、発見されたかどうか、細胞内輸送。それは我々 はありません含まれてがん細胞は、我々 はこれまでのところ、テストのいずれかでこのような事例を観察している注目に値する: A375P、A375M2、SK-Mel28、WM983A/B (人間メラノーマ);MCF 7、MDA-MB-231、MDA-MB-436 (ひと乳癌);NCI H1975 (ひと肺癌);SK Hep1 (肝臓癌);4T1、4T1.2、66 cl 4、67NR、FARN168 (マウス炎症性乳癌);B16F0、B16F3、B16F10 (マウスのメラノーマ);MTLn3 (ラット乳腺腺癌)。
NIS 機能は、取り込みアッセイを用いた放射性 NIS 基板測定する必要があります。SPECT 検査99 mTcO4- (6.01 h 99 mのためのより便利な長い半減期を持っていることと同様、任意ルコース合成を必要とせず病院で発電機作り出される、従って広く利用をされているためTc 18F 110 分と比較して)、新しい NIS FP 発現細胞株のルーチンの機能検証のためこの NIS 基板を使いました。ルコース取り込みのラジオト レーサー取り込みの特異性を実証することにより予想される削減/廃止で起因した NIS co 基板ナトリウム過塩素酸塩と NIS 発現細胞のブロック済み。この NIS 特異性テストは、重要な検証ステップです。NIS 特異性実験の結果削減ルコース取り込みそれぞれ親細胞に匹敵するになるない場合、実験中にテクニカル エラーが発生しました、またはルコース取り込みは NIS が原因でした。またナトリウム過塩素酸塩をあらかじめブロックが親セル行のラジオト レーサー吸収を減少させることが可能です。これは内因性機能 NIS 発現と細胞を識別する (例えば刺激甲状腺細胞6)。
このイメージング プロトコルの重要な利点は、3 D で、時間の経過とともに情報が収集されることです。これは時間、対になったデータを提供でき、こうして動物間の変動によって引き起こされる問題を克服するために同じ動物から画像の比較を許可します。これは、異なる時点で別の動物を犠牲にすることに基づいている最も非イメージング関連転移評価法と対照的します。図 3Bの個々 の動物に時間をかけて進行して明らかにどのように転移拡散し副産物です。ペット/ct で検出された信号は NIS 式によって根本的に引き起こされます。これには、外因 NIS 発現がん細胞からすべての信号だけでなく、内生 NIS を表現するすべての臓器が含まれます。代表的な内因性 NIS 信号は、甲状腺、唾液腺、胃と、乳腺と涙の腺の一部で低レベルで発見されます。内因性の NIS 式に加えて NIS ラジオト レーサー [18F] BF4-もそれにより膀胱の尿で満たされたルコース吸収を説明する、腎臓を介して排泄されます。腎臓吸収はこのプロトコル (45 分ポスト ラジオト レーサー インジェクション6) で推奨される画像の時点で検出できません。膀胱の尿で満たされたからの信号は、信号の背景問題につながるはずだ、もし膀胱をイメージングする前に麻酔下で機械的に空けることができます。重要なは、内因性信号は、動物の系統によって異なります。また、乳腺の内因性の NIS 式授乳中の条件10の下でより高いことに注目すべきです。提示の場合、(参考:上記のリスト) の前に正常に特徴付けられるそれらの転移細胞株の場合、大幅に転移の検出を妨害する内因性の NIS 式が見つかりませんでした。それは注目に値する、その [18F] BF4-ヨウ化物は、甲状腺ホルモン6に代謝されるのでヨウ化物イオンと比較してがん細胞に取り込みより使用可能になります。この現象は、[18F] BF4- 6と比較して血流中における放射性量に貢献するもかもしれない。異なるアプリケーション (癌細胞が他の癌や非癌細胞追跡アプリケーションの追跡)、これが異なる場合があります、したがって内因性 NIS 式は信号-バック グラウンド問題を引き起こす可能性が高いかどうかを評価するためにお勧めです。予備的な実験。臨床画像で重要な側面は、ラジオト レーサーのモル アクティビティです。ここで説明する方法は、開始材料14として ~1.5 GBq 18F-を使用し、以前に報告された置換メソッド12を大幅に上回る臼歯の活動を生産する示されています。[18F]BF4-モル活動 1 GBq/µmol12で生産は、NIS を表現する組織の減少吸収につながります。これは特に重要な注入 1 キログラムあたりの放射能量が高いとき、すなわちマウスなどの小動物がイメージ39;人間40に設定で重要です。高モル活動したがって高品質臨床 PET 画像診断のために不可欠です。ホウ素三フッ化添加法14、このプロトコルでは、自動化された形式で示されるによって得られるモルの活動は、この問題を克服します。さらに、[18F] BF4-合成の提案するプロトコルがよい製造業練習 (GMP) に準拠されていないことに注目すべきはこのフォームに人間の臨床試験で使用のために適していません。(特に BF4- 18F 置換法) による GMP プロトコルは利用場所で40。
ペット/ct により NIS FP 発現がん細胞から生じるラジオト レーサーの NIS を介した取り込みを示すルコース取り込みの可視化ができます。もっと重要なは、関連付けられているペット シグナルを示すことができます。任意の潜在的な背景から関連する信号の一貫性と公平な分化を確実にする信頼性の高いしきい値選定手順を適用する必要があります。背景は、生体内のさまざまな場所で変わる、よう地域や閾値化や細分化を検討することが重要です。1 つそのような方法により開発され、大津市34, にちなんで、原発巣および転移このプロトコルの 3 D レンダリングのための 3 D の実装を採用します。一般的に、観測者によって視覚的に見たイメージは注入量 % (%id) の線量値に最高に対応します。イメージ ベースの定量化に関してはまたそのボリュームにさまざまな組織の測定された放射能値を正規化することが重要としてます。正規化された結果、ボリューム (例えば%ID/mL)、および (ii) 標準摂取量 (SUV35) ごとに (i) %id を表現する 2 つの主に使用された方法があります。%ID/mL 考慮個々 のボリュームのみ、SUV は全体の動物の間では、平均の放射能基準測定という点が違います。また、NIS 画像をレンダリングすることライブ腫瘍体積 (LTV) アクセス/死んでセルいない ATP を合成することはできませんインポート ラジオト レーサー10 のために注意することが重要です。これは、腫瘍細胞の死/壊死の区域を示す腫瘍 (腫瘍の「ドーナツ形」) 内で大規模な低信号領域を説明します。重要なは、LTV だった (これはアカウント生存率考慮されていない表在性腫瘍領域のみを評価) キャリパ測定によってアクセス可能な原油腫瘍体積と比較して腫瘍負荷のより信頼性の高いメジャーです。
動物殺処分後の組織を収穫するとき、このデュアル モード追跡戦略の主な利点は明らかです。生体内のイメージによって導かれ、動物の解剖時に蛍光がん細胞による、小さな深部臓器転移が確実に収穫もできます。凍結組織保全/区分方法論により、GFP の直接蛍光抗 GFP 抗体はホルマリン固定と比較して低減構造組織保全を犠牲にして染色を必要とせずパラフィン包埋方法論 (FFPE)。後者批判的に必要がありますアンチ FP の染色も FFPE メソッド (固定/退避) による蛍光蛋白質のまま保全と互換性がありませんので。蛍光信号は腫瘍細胞の存在を示しているが、この分類は収穫された組織 ('体内') の前のヴィヴォ放射能測定によって確認することが重要です。放射能測定前のヴィヴォ、蛍光の視覚的検出したがってできるがんの識別検出されないままになる細胞依存性信号より敏感。ルコース放射能測定、動物の注入、殺処分する動物の回と同様に、注入されたルコース量を正確に注意する重要ですし、校正されたシンチレーション測定結果のイメージング セッション端末の場合収穫された組織。これはルコース減衰の補正を確認し、それによって信頼性の高い体内分析を有効にすることが欠かせません。
ペット/CT により腫瘍の進行レベルで全身転移の広がりの評価などの非侵襲的 3 D 定量化を繰り返されます。この機能は、さまざまな時点で腫瘍の進行の評価のため安楽死させた動物の大規模なコホートにしばしば依存する従来の方法より有利です。このイメージング ベースのアプローチの利点は、: (i) 高感度非侵襲的 3次元体内の定量化、(ii) 繰り返しの画像、(iii) の縦の対データの取得の可能性があるため動物の数を大幅に削減以降順番動物数を減らします、動物間の変動を除外して統計情報を向上させるセッションをイメージング (iv) 特定の高い活動と (v) [18F] BF4-の生産を自動化、確認前のヴィヴォ蛍光顕微鏡やフローサイトメトリーなど手法による組織中の組み込みオプションは。
生体内で細胞を追跡は成長しているフィールドです。最近の画像処理技術により、強化された解像度、検出限界および多重機能 (マルチ モーダル イメージング) を介しての進歩によって支えられています。このプロトコルでは 3 D で繰り返しイメージングによる自発的ながん細胞の転移を含む腫瘍の進行を追跡するこの概念を適用されます。アプリケーションには、自発的ながん細胞の転移のメカニズムの解明を目指した研究が含まれます。たとえば、追跡可能な腫瘍細胞を利用して転移プロセスの異なる免疫細胞コンポーネント (として現在・動物系統 immunocompromisation のさまざまなレベルの機能) の影響が検討される可能性があります。同様に、動物の系統や癌細胞ラインのいずれかの個々 の遺伝子の影響を検討する可能性があります。さらに、提案するプロトコルは、特定の薬剤または腫瘍の進行の治療概念の有効性の評価/検証をされる可能性があります。重要なは、このレポーター遺伝子: ラジオト レーサー ペア pet (NIS: [18F] BF4-) アプリケーションを追跡する別のセルにも使えます。たとえば、として有望な治療上のアプローチをいくつかの細胞療法の現在浮上しています。これは、細胞治療がん治療41移植42や再生医療43,44設定にも含まれています。全身体内細胞トラッキング安全性評価および治療モニター開発と臨床細胞治療薬、たとえば、翻訳の重要性が増してください。
著者は、彼らは競合する金銭的な利益があることを宣言します。
研究は、キングス ・ カレッジ ・ ロンドンと UCL 包括的ながんイメージング センター、三菱レイヨンと DoH (イングランド); がん研究英国、EPSRC によって資金を供給に支えられて男のと聖トーマスの NHS の基礎信頼とキングス カレッジ ロンドンで基づいて健康研究 (NIHR) 医歯薬学研究センター研究所医療工学許可番号 WT 088641/Z/09/Z; 下 Wellcome Trust、および EPSRC によって資金を供給の卓越性の中心部癌研究英国学際的なプロジェクト賞を受賞 GOF と PJB、GOF に王の健康のパートナーを許可します。NanoPET/CT と nanoSPECT/CT スキャナーは、購入し、Wellcome の信頼から機器の助成金によって維持されました。見解は、これらの者と必ずしも NHS、NIHR、または、DoH のものです。
Name | Company | Catalog Number | Comments |
Step 1) Engineering and characterization of cancer cells to express the radionuclide-fluorescnece fusion reporter NIS-FP. | |||
2'-(4-ethoxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5'-Bi-1H-benzimidazole | Thermo Scientific | H3570 | Trivial name: Hoechst 33342; CAS number: 23491-52-3; Hoechst 33342, Trihydrochloride, Trihydrate - 10 mg/mL Solution in Water. |
4T1 murine breast cancer cell line | ATCC | CRl-2539 | for details see ATCC website |
Automatic Cell Counter, e.g. CASYCounter | Roche Diagnostics GmbH | 5651697001 | CASY Model TT Cell Counter and Analyzer |
CASYclean Cleaning Reagent | Sedna Scientific | 2501036 | |
CASYton Isotonic Diluent | Sedna Scientific | 2501037 | |
Confocal Fluorescence Microscope, e.g. Leica TCS SP5 | Leica, Wetzlar, Germany | Equipped with Plan-Neofluor 25×0.5NA and Plan-Apochromat 63×1.4NA oil UV objectives and Diode (405 nm), Argon-ion (458, 477, 488, 496, 514 nm) and HeNe (543 and 633 nm) lasers; A Leica LAS AF Lite Software 4.0.11706 (Leica Microsystems CMS GmbH) was used for image acquisition and and anaysis | |
Cover slips No. 1.5 thickness | VWR International | 631-0150 | |
Dabco | Sigma | 290734 | Stock 125 mg/mL |
DMEM | Sigma | D5546 | Supplement with 10 % (v/v) FBS and L-glutamine (2 mM) to make up the optimal growth medium for MDA-MB-231 cells. |
FACS sorter, e.g. BD FACSAria III | BD Biosciences | Equipped with a BD FACS DIVA Software, a 6 Laser System (375/405/488/561/633 nm lasers) - cells sorted with a 100 μm nozzle under 20 psi flow pressure, window extension of 2.0 μm, 2.0 Neutral Density Filter and 3 kV plate voltage | |
Fetal Bovine Serum (FBS) | Sigma | F9665 | Heat inactivated at 56 °C for 30 min |
Automated Gamma Counter, e.g. 1282 Compugamma | LKB Wallac Laboratory | 99mTc-pertechnetate energy window 110-155 keV 18F energy window 175-220 keV | |
Hoechst 33342 solution | Life Technologies | H1399 | 1-3 µg/mL; DAPI (from various supplieres) can be used instead. |
L-glutamine | Sigma | G7513 | Solution 200 mM concentrated, sterile-filtered |
Linear polyethylenimine (PEI) | Polyscience | 23966-2 | Linear, 25 kDa; transfection reagent for 293T cell line. |
MDA-MB-231 human breast cancer cells | ATCC | HTB-26 | for details see ATCC website |
Mowiol 4-88 | Sigma | 81381 | |
pLNT SFFV NIS-mEGFP | request from our lab | n/a | For details (generation and maps) see Supplementary Information |
pLNT SFFV NIS-mCherry | request from our lab | n/a | For details (generation and maps) see Supplementary Information |
pMD2.G | Addgene | #12259 | plasmids encoding for the VSV-G envelope |
pRRE | Addgene | #12251 | packaging plasmid |
pRSV-Rev | Addgene | #12253 | packaging plasmid |
Paraformaldehyde solution 4 % (w/v) in PBS | Santa Cruz Biotechnology | sc-281692 | |
Penicillin-Streptomycin | Sigma | P43330 | Containing penicillin (10,000 units/mL) and streptomycin (10 mg/mL), sterile-filtered |
Phosphate Buffered Saline (PBS) | Sigma | D8537 | pH 7.4, sterile-filtered and without calcium chloride and magnesium chloride |
Poly(vinyl alcohol - vinyl acetate) | Polysciences | 17951 | Trivial name: Mowiol 4-88; CAS number: 9002-89-5 |
Puromycin dihydrochloride | Sigma | P8833 | From Streptomyces alboniger, reconstituted in sterile water |
Benchtop centrifuge, e.g. Rotina 380 R Benchtop centrigfuge | Hettich Lab Technology | ||
RPMI 1640 | Sigma | R0883 | Supplement with 10% (v/v) FBS and L-glutamine (2mM) to make up the optimal growth medium for 4T1 cells. |
SFCA Syringe filter 0.45 μm | Corning | ||
Syringes 10 mL | BD Emerald | Disposable non-sterile syringes | |
Tissue culture fluorescence microscope, e.g. EVOS-FL | Life Technologies | Cell Imaging System equipped with a 10× objective (PlanFL PH2, 10×/0.25, ∞/1.2) and a colour camera | |
Trypsin-EDTA solution 10X | Sigma | 59418C | (0.5 % (w/v) trypsin, 0.2 % (w/v) EDTA) gamma irradiated by SER-TAIN process and without phenol red |
Wheat Germ Agglutinin Alexa Fluor 633 Conjugate | Life Technologies | W21404 | Used at 1:1000 (2 µg/mL) for cell immunofluorescence |
Step 2) Establishment of in vivo tumor models. | |||
Digital caliper | World Precision Instruments | 501601 | |
Isoflurane 1000 mg/g | Isocare | For inhalation | |
Fluorescence Torch, e.g. NightSea Fluorescence Torch DFP-1 | Electron Microscopy Sciences | SFA-LFS-RBS/GR | Equipped with GFP and RFP emission filters and NightSea filter goggles (DFP-1) |
Syringes 0.3 mL U-100 insulin | Terumo | 29G × 1/2'' - 0.33 × 12 mm | |
Standard materials/equipment for aseptic technique and animal maintenance | |||
Step 3) Production of [18F]BF4- using an automated radiotracer synthesis platform. | |||
15-crown-5 | Sigma-Aldrich | 188832 | CAS 33100-27-5 |
Acetonitrile (anhydrous) | Acros Organics | 326811000 | |
Boron trifluoride diethyl etherate | Sigma-Aldrich | 216607 | BF3.OEt2, purified by redistillation, ≥46.5 % BF3 basis. CAS 109-63-7 |
Automated Radiotracer Synthesis (ARS) platform, e.g. FASTLab | GE Healthcare | ||
Disposable cassettes for ARS platform, e.g. FASTLab cassettes | GE Healthcare | FASTlab Developer pack | |
Polygram Alox N/UV254 polyester sheets | Macherey-Nagel | 802021 | RadioTLC plates, 40×80 mm |
Strong anion exchange cartridge, e.g. Sep-Pak Accell Plus QMA Plus Light | Waters | WAT023525 | Condition with 1M NaCl (10 mL) and H2O (10 mL) |
Alumina neutral cartridge, e.g. Sep-Pak Alumina N Plus Light | Waters | WAT023561 | Condition with H2O (10 mL), acetone (10 mL) and air (20 mL) |
Water for injection USP | GE Healthcare | ||
Nitrogen filter | Millipore | SE2M049I05 | Sterile 0.2 µm FG Millex 13 mm |
Step 4) In vivo imaging of NIS-FP expressing cells by nanoPET/CT. | |||
Isoflurane 1000 mg/g | Isocare | For inhalation | |
Preclinical PET/CT multimodal imaging instrument, e.g. nanoScan PET/CT | Mediso Medical Imaging System, Budapest, Hungary | ||
Fluorescence Torch, e.g. NightSea Fluorescence Torch DFP-1 | Electron Microscopy Sciences | SFA-LFS-RBS/GR | Equipped with GFP and RFP emission filters and NightSea filter goggles (DFP-1) |
Rodent anesthesia induction chamber | Vet-Tech | AN010R | With three-way valves (x2), tube mount connector for inlet, PVC tubing for gas inlet (2 m) and 22 mm scavenging tube (2 m) |
Rodent anesthesia system | Vet-Tech | AN001B | Including animal face-mask suitably sized for animal of interest and isolflurane vaporizer |
Sterile physiological saline | Thermo Scientific Oxoid | BO0334B | |
Syringes 0.3 mL U-100 insulin | Terumo | 29G × 1/2'' - 0.33 × 12 mm, for intravenous injection of radiotracer | |
Veterinary Scavenger | Vet-Tech | AN200 | VetScav filter weighing mechanism - 240 V with automatic temperature compensation and LED system |
5) In vivo data analysis. | |||
Tera-Tomo Monte Carlo based full 3D iterative algorithm | Mediso Medical Imaging System, Budapest, Hungary | ||
VivoQuant Software | Invicro LLC., Boston, USA | ||
6) Ex vivo analyses | |||
2-Methylbutane | Sigma | 59070-1L-D | Pre-cooled over liquid nitrogen to freeze OCT-embedded tissues |
Bovine Serum Albumin (BSA) | Sigma | 85040C | |
Cover slips 22×50 mm | VWR International | SMITMCQ211022X50 | |
Cryostat, e.g. Cryostat MNT | SLEE Medical | two-piece modular histology embedding machine equipped with an embedding module, a tissue storage compartment and a cold plate | |
Cy5 AffiniPure Goat anti-Rabbit IgG (H+L) | Jackson/Stratech | 111-175-144 | Used at 1:500 (2 µg/mL) |
Dabco | Sigma | 290734 | Stock 125 mg/mL |
Microtome blades, e.g. Feather S35 | CellPath | ||
Fluorescence Microscope (wide-field or confocal), e.g. Nikon Eclipse Ti-E Inverted Fluorescence Microscope | Nikon | Equipped with 10×, 20× (air) and ideally 40× (oil) objectives and lasers/filters or filter cubes, respectively, that are suitable for Hoechst 33342, GFP and Cy5 | |
Automated Gamma Counter, e.g. 1282 Compugamma | LKB Wallac Laboratory | 99mTc-pertechnetate energy window 110-155 keV, 18F energy window 175-220 keV | |
Hoechst 33342 solution | Life Technologies | H1399 | |
Fluorescence adapter for dissecting microscope, e.g. NightSea Adapter | Electron Microscopy Sciences | SFA-LFS-RBS/GR | Equipped with GFP and RFP emission filters |
O.C.T. compound | VWR international | 361603E | |
Wax pen, e.g. PAP-PEN | Dako UK Ltd | Wax pen to draw around tissue section to reduce required staining/washing solution volumes | |
Paraformaldehyde solution 4 % (w/v) in PBS | Santa Cruz Biotechnology | sc-281692 | |
Rabbit anti-CD31 | Abcam | ab28364 | Polyclonal anti-mouse used 1:50 (20 µg/mL) for tissues immunofluorescence |
Microscope slides, e.g. Superfrost slides | VWR, Lutterworth, UK | ||
Tris-buffered saline (TBS) | available from various suppliers. | Tris-buffered saline; 150 mM NaCl, 25 mM Tris/HCl at pH 7.4 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請さらに記事を探す
This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved