このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
この記事では、セラドマイト源を調製し、長距離イメージング低エネルギー電子点源投影顕微鏡で使用するための明るさを推定するプロトコルを紹介します。
ここで説明する電子セラドマイト源は、長距離イメージングにおける低エネルギー電子点源投影顕微鏡で良好に機能する。それは鋭い金属の先端と比較される主要な利点を提示する。その堅牢性は数ヶ月の寿命を与え、それは比較的高圧の下で使用することができる。セラドニット結晶は、炭素繊維の頂点に堆積し、球状のビーム形状と容易な機械的位置を確保する同軸構造に維持され、ソース、対象物および電子光学系軸を整列させる。マイクロピペットを用いたセラドマイト含有水滴の生成を介して単結晶堆積がある。走査型電子顕微鏡観察を行って堆積物を検証することができる。ただし、これにより手順が追加されるため、ソースに損害を与えるリスクが高まります。したがって、調製後、ソースは、通常、投影顕微鏡で真空下に直接挿入される。最初の高電圧供給は、電子放出を開始するために必要なキックオフを提供します。その後、関連するフィールド放出プロセスが測定されます:この方法で調製された数十の電子源について既に観察されています。明るさは、投影システムで測定された1つのエネルギーと円錐角での強度、ソースサイズの過剰推定によって過小評価されます。
電子放出に用いられる金属/絶縁体構造は、その低いマクロ的フィールド1のためにほぼ20年間研究されてきた。関与する電界は、鋭い金属先端5、6、7を有する古典的な電界放出に必要なV/nmとは対照的に、いくつかのV/μm2、3、4の順序のみである。これはおそらく、電子源技術に非常に有用である開始プラズマ放電を説明します。数年前、電子透過炭素層8に天然絶縁体のフィルムを堆積させることで、この低電界放出を探求しました。ブラジルのアメティスタ・ディ・スル鉱山のパラナトラップの玄武岩に含まれる絶縁体鉱物「セラドライト」が選ばれました。
セラドニットが粉砕されている場合、結晶形状は、マイクロメトリック寸法と100nm未満の厚さを有する長方形のスラブです(通常:1,000 nm x 500 nm x 50 nm)。走査型電子顕微鏡では完全に平坦で認識可能です(図1)。フィルムは、炭素層上のセラドマイト含有水滴の堆積によって形成される。印加電圧が増加すると、ファウラー・ノルドハイム政権に続いて電子を放出し、最高電圧の強度飽和度を持つ。投影システムでダイヤフラムを使用した研究は、1つのエミッタが点状のソース9であることを示しました。しかし、ダイヤフラムでこの大きなフィルムを使用してソースを選択しても、ポイントソースの可能性を利用しませんでした。例えば、低エネルギー電子点源投影顕微鏡で一般的に使用される点源は、約100nmのソース間距離を可能にする。しかし、このようなソース対オブジェクトの距離は、フィルムでは問題外になります。この電子源に向かって何かを動かすことができるように、1つの結晶を分離する方法を見つけることは挑戦でした。我々の溶液は、まず、10μmの炭素繊維を用いる:繊維の頂点に液滴を堆積させることは、必ずしもセラドイト結晶の数を制限する。次に、液滴の大きさを制限することにしました:約5μmの先端を持つマイクロピペットは、セラドニテ含有水で満たされ、マイクロピペットの入り口に圧力を加え、繊維の頂点を濡らす小さな滴を作成します。プロトコルは、完全なソース準備プロセスの詳細を示します。
得られたソースは、ソース、オブジェクトと電子光学系10との間に良好な位置合わせを可能にする同軸点源である。直径10μmは超鋭い先端よりもまだ広いため、ソースからオブジェクトまでの距離は数十マイクロメートルに制限されています。しかし、最近、エインツェルレンズと組み合わせたセラドナイト源エミッタは、従来のポイントソース投影顕微鏡に比べて同等のパフォーマンスを発揮することが示されました。このようにアクセス可能になった長距離イメージングは、物体に対する電荷効果11と12、13に関与する画像歪みを制限する。セラドニテ源はまた鋭い金属の先端と比較される主要な利点を示す。それは強い:ポイントソースは結晶の下にあり、したがってスパッタリングから保護されています。ソースは比較的高圧下で動作することができます:それはいくつかの分の間に10-2 mbarでテストされました。しかし、その寿命とその安定性は、右の真空条件に依存したままです。私たちは通常、10-8 mbarでセラドマイト源を採用し、数ヶ月の寿命を取得します。
この記事は、セラドイト源を使用してコヒーレント電子ビームを生成することを希望するすべての人を助けることを目的としています。
1. ソースの準備
注:当社の顕微鏡では、ソースサポートは、プレート上の電気的接続と90μmの内径のステンレス鋼管の1cmを出現させる機械式ガラスセラミックプレートで構成されています。
2. ソースのキックオフ
注:当社の顕微鏡では、ソースサポートは手動回転フランジに固定され、また、移動するピエゾ電気アクチュエータ(100nm分解能、25mm範囲)を運び、電気的コマンドを使用して、ソースに対するオブジェクトを参照してください(図2を参照)。この物体は、電子放出のための電気陽極の役割を果たしています。それは一般的に電気的に接地され、ソースの前に置かれます。私たちの実験では、電圧は異なる電源で手で制御されています。
3. ソースの特性評価
注: ソース特性をプローブする方法を示します。ソースの明るさを推定するために、2つの投影顕微鏡が使用されます。これらの設定では、オブジェクトの影は、遠くに配置された蛍光スクリーン上で観察されます (図 2)。ソース(カソード)とオブジェクト(アノード)はマイクロ操作フランジに取り付けられ、投影面で一緒に回転できます。蛍光スクリーンが付いた簡単な短い投影のセットアップは低い拡大の投影を可能にする。第2のセットアップは、最も強い倍率12のための静電レンズおよび二重マイクロチャネルプレート/蛍光スクリーンアセンブリを含む。各投影画像で入手可能な情報は、明るさを過小評価するために使用されます: レコード13の最小の詳細.この最小の表示詳細は、ソース サイズの幾何学的ぼかし、オブジェクトとソース間の振動、および検出器の解像度を含む、見かけ上のソース サイズによって異なります。
プロトコルに詳細に調製された炭素繊維の走査型電子顕微鏡写真が、15kVのSEMで得られた。ソースは、頂点に1つ、時には2つの結晶を示します(図1)。しかし、SEMの使用には炭素繊維に対する別の支持が伴い、破損することなく取り付けやマウント解除が困難です。直接電子放出を試みる方が安全です。投影顕微鏡で試験した(図2)、<...
このプロトコルは、顕微鏡スケールのソースのジオメトリがソース間で変化するため、重要ではありません。難点は、炭素繊維が脆いため、その切断が不適切な長さにつながる可能性が高いということです。十分な長さは約500μmです。カットの顕微鏡的形状は重要ではありません。重要なステップは、導電性ワイヤの頂点に非常に少数の結晶(理想的には1つ)を堆積することです。堆積体積で?...
著者は競合する財政的利益を持っていない。
著者たちは、この記事の英語を上達させてくれたマージョリー・スウィートコに感謝したいと思います。
Name | Company | Catalog Number | Comments |
Carbon fiber filament | Goodfellow | C 005711 | |
Carbon fiber filament | Mitsubishi Chemical | DIALEAD | |
Carbon fiber filament | Solvay | THORNEL P25 | |
Carbon fiber filament | Zoltek | PX35 Continuous Tow | |
Celadonite | Verona Green earth / pigment | ||
Dual-stage microchannel plate and fluorescent screen assembly | Hamamatsu | F2225-21S | |
Flow controller | Elveflow | OB1 | |
Machinable glass ceramic | Macor | ||
Micropipette Puller | Sutter Instruments | P2000 | |
Piezo-electric actuators | Mechonics | MS30 | |
Quartz capillary | Sutter Instrument | B100-75-15 | |
Silver Lacquer | DODUCO GmbH | AUROMAL 38 | |
Ultrasonic processor | Hielscher / sonotrode MS3 | UP50H |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved