JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

蛍光活性化細胞選別 - 放射性リガンド処理組織(FACS-RTT)は、アルツハイマー病における18 kDaトランスロケータータンパク質またはセロトニン5HT2A受容体発現の役割を細胞規模で研究するための強力なツールです。このプロトコールは、TgF344−ADラットモデルにおけるFACS−RTTの エクスビボ 適用を記載する。

要約

グリア細胞は、おそらくアルツハイマー病(AD)などの神経変性疾患の病態生理学においてかなりの意味を持つ。それらの変化は、おそらく炎症誘発状態と関連している。TgF344-ADラット株は、アミロイドタンパク質Aβ-40およびAβ-42をコードするヒトAPPおよびヒトPS1ΔE9 遺伝子を発現するように設計されており、加齢に伴うアミロイド病態および認知障害を示す。本研究では、TgF344-ADラットモデルを用いて、18kDaのトランスロケータータンパク質(TSPO、グリア細胞活性化のマーカー)結合の細胞起源、およびADにおいて破壊される可能性のある5HT2A受容体(5HT2AR)セロトニン受容体レベルを評価する。ここで紹介する技術は、Radioligand Treated Tissue(FACS-RTT)への蛍光活性化細胞選別であり、 in vivo PETまたはSPECTまたは ex vivo/in vitro オートラジオグラフィー技術を補完する定量的細胞型特異的技術である。画像化の前に使用したのと同じ放射性標識トレーサーを定量し、細胞選別後にサイトメトリーカウンター γを使用する。これにより、高い細胞特異性および感度を有する放射性標識タンパク質の細胞起源を決定することができる。例えば、FACS-RTTを用いた研究では、(i)リポ多糖(LPS)誘発神経炎症のラットモデルにおけるTSPO結合の増加がミクログリアと関連していたこと、(ii)12ヶ月および18ヶ月でのTSPO結合の増加が最初にアストロサイトと関連し、次にTgF344-ADラットにおけるミクログリアが野生型(WT)ラットと比較して、および(iii)5HT2Aの線条体密度に関連していたことが示されました。Rは、同じラットADモデルにおいて18ヶ月でアストロサイトにおいて減少する。興味深いことに、この技術は事実上すべての放射性トレーサーに拡張することができます。

概要

アルツハイマー病(AD)などの神経変性疾患は、症状の増加に伴う神経細胞喪失によって特徴付けられる。認知症の最も一般的な原因であるADは、症例の60%〜70%を占め、世界中で約5,000万人が罹患しています1。神経病理学的レベルでは、ADの2つの主要な特徴は、細胞外アミロイドβ(Aβ)プラークおよび細胞内タウ神経原線維のもつれの蓄積である。グリア細胞の変化はまた、AD2 およびいくつかの神経伝達物質系の可能な破壊と関連している34

TgF344-ADラット株は、ヒトAPPおよびPS1ΔE9導入遺伝子を発現することによってADをモデル化するように改変され、可溶性および不溶性のAβ−40およびAβ−42発現およびアミロイドプラーク形成5をもたらす。それはまた、タウオパチーにつながるタウタンパク質の過剰リン酸化形態の蓄積を提示する。9〜24ヶ月齢から、ラットはADの病理学的特徴および認知障害5,6,7,8,9を徐々に発症する。

陽電子放射断層撮影(PET)、単一光子放射コンピュータ断層撮影(SPECT)、およびオートラジオグラフィーは、γ光線の放出および定量化に基づく技術である。放射性トレーサーは、インビボ(PETおよびSPECT)またはエキソビボ/インビトロ(オートラジオグラフィー)のいずれかで定量化される。これらの敏感な技術は、ADなどのいくつかの脳疾患のメカニズムの理解に貢献してきました。実際、神経炎症に関しては、in vivo神経炎症マーカーである18kDaトランスロケータータンパク質(TSPO)を、[11C]-(R)-PK11195または[11C]PBR28などの放射性標識トレーサーで評価する多くの研究がある(レビューについては10を参照)。加えて、神経伝達物質系の変化は、放射性トレーサー111213を用いて研究されている。

しかしながら、これらの技術は、放射性シグナルの細胞起源を決定しない。これは、PET/SPECTにおける放射性リガンドの結合における変化の生物学的基盤の解釈を妨げる可能性がある。例えば、神経炎症のTSPO研究の場合、TSPOの増加または減少がアストロサイトまたはミクログリアの変化によるものかどうかを理解することが最も重要である。放射性リガンド処理組織への蛍光活性化細胞選別(FACS-RTT)技術は、これらの問題を回避するために開発され、すべての細胞タイプにおける放射性リガンド結合を個別に評価し、細胞あたりの標的タンパク質密度を定量化することができます。この革新的な技術は、PETおよびSPECTイメージングと補完的で高い互換性があります。

ここで、この技術は、TSPO特異的放射性リガンドを用いた神経炎症の研究とセロトニン作動系の評価の2つの軸に沿って適用された。第1の軸では、目的は、急性炎症反応に応答するTSPOシグナルの細胞起源を理解することであった。したがって、FACS-RTTは、リポ多糖(LPS)注射を介して神経炎症を誘導した後、およびin vivo [125I]CLINDE SPECTイメージング研究に続いてラットの脳組織に使用された。さらに、12ヶ月齢および24ヶ月齢のTgF344-ADラットおよび一致する野生型(WT)ラットに、同じイメージングおよびFACS−RTTプロトコルを適用した。第2の軸は、細胞型によるエクスビボ5−HT2AR密度評価を介してこのラットモデルにおけるセロトニン作動性系変化の起源を決定することを目的とした。

Access restricted. Please log in or start a trial to view this content.

プロトコル

すべての実験手順は、ジュネーブ州の人間および動物実験のための倫理委員会、研究倫理のための州委員会(CCER)、およびジュネーブ州の健康の一般的な方向性(スイス)とそれぞれ合意して実施されました。データは、動物研究: 報告インビボ 実験(ARRIVE)ガイドラインに従って報告されます。

1. SPECTカメラの準備とキャリブレーション

  1. カメラの電源を入れ、オペレーティングソフトウェアをロードします( 材料表を参照)。 ホームXYZステージ ボタンをクリックして、ホーミングを実行します。
  2. 1 回の 10 分間のスキャン取得で構成される実験を設定します。 ステップ モードを ファイン に設定し、 アクイジション モードを リストモード に設定します(発光スペクトル全体を記録するため)。
  3. ベッドをセットアップし、温暖化システム、呼吸センサー、および麻酔が機能し、安全であることを確認します(図1A-D)。次に、動物の頭部が配置される場所にファントム(すなわち、既知の濃度の125Iの2mLを2mLマイクロフュージチューブに入れる)を置く(領域の中心、図1E)。
  4. 画面の下部にある3つの画像の助けを借りて、3次元のカーソルをスライドさせてスキャン領域を設定します。ファントムと動物のスキャン音量が同じであることを確認します。
  5. ステップ1.2~1.4で設定したパラメータを使用して、後続のキャリブレーション用のファントムスキャンを開始します。

2. SPECTイメージングのためのワークスペース設定

  1. 消毒剤のウイルスでワークスペースを清掃し、すべての表面に柔らかい紙を置きます。
  2. それぞれのタンクに十分なイソフルランと酸素があることを確認してください。
  3. ラット尾静脈をより鮮明に見るために、バタフライカテーテルのフィンを切り取って24Gカテーテルを準備する。
  4. 針を抜いた後、ヘパリン溶液(25000 U/mL)でカテーテルを完全に充填してカテーテルをコーティングします。次に、カテーテル挿入後の血栓形成を避けるために、針をその中に戻します。

3. [125I]クリンデ放射性トレーサー合成

注意: 放射能は、生細胞の原子に影響を与え、遺伝物質(DNA)を損傷するのに十分な電離エネルギーを持つ可能性があります。

  1. 放射能実験の許可を受けた適切な環境で作業すること。
    メモ:指や身体の線量計など、放射能の取り扱いに適した個人用保護具(PPE)を着用してください。放射能源から安全な距離を保つようにしてください。
  2. 100 μLの酢酸中のトリブチルリン前駆体100 μgをヨウ化ナトリウム(Na125I)( 材料表を参照)および5 μLの37%過酢酸をグローブボックスに入れたサーモサイクラーで20分間インキュベートする。
  3. 50%アセトニトリル(ACN)を水中で希釈して500 μLの容量に希釈します。希釈した反応液500 μLを逆相カラムに注入します( 材料表を参照)。
  4. [125 I]CLINDEを線形勾配HPLCで単離し、5%~95%ACNを7mMH3PO4中で10分間実行します。単離物をH2Oで希釈して最終容量10mLを達成し、希釈反応物を濃度カラムに注入する(材料表を参照)。
  5. カラムから [125I]CLINDE を 300 μL の無水エタノールで溶出した後、RT で真空遠心分離機で 40 分間インキュベートしてエタノールを蒸発させます。
  6. [125I]CLINDEを含む残渣を300 μLの滅菌生理食塩水で希釈し、原液を作成する。
  7. その放射能を測定した後、原液を滅菌生理食塩水で希釈し、500 μL中の0.037 MBqの溶液を得た。
  8. HPLC(高速液体クロマトグラフィー)によりトレーサーを精製する。450nmでの標準校正を使用して溶出時間を決定し、単一の放射性ピークを単離する。7つの標準濃度の低温(非放射性)CLINDE(0.1 μg、0.5 μg、0.75 μg、1 μg、1.5 μg、2 μg、および5 μg)の50%ACN溶液400 μLを用いて標準検量線を実行します。無線TLC(薄層クロマトグラフィー)で単一のピークを測定することにより、放射化学的純度を確立する。放射化学物質の純度が60%を超えていることを確認してください。
  9. 450nmにおける紫外線吸光度を測定する放射性リガンドの比活性と、冷たく参照化合物で作成した検量線を確認してください。比活性が 1000 GBq/μmol を超えていることを確認します。

4. [125I]R91150 放射性トレーサー合成

メモ: CLINDE 合成のセクションで説明したのと同じセキュリティ規則に従っていることを確認してください。

  1. 3 μLの無水エタノール、3 μLの氷酢酸、15 μLのキャリアフリーNa125I( 材料表を参照)(10 mCi)の溶液に300 μgのR91150前駆体を0.05 M NaOHおよび30%H2O2の3 μLで混合する。グローブボックスで30分間インキュベートする。
  2. 反応全体を逆相カラムに注入する( 材料表を参照)。
  3. [125I]R91150 をアイソクラティック HPLC ラン (ACN/水 50/50、10 mM 酢酸バッファー) で 3 mL/minの流速で分離します。
  4. [125 I]R91150をH2Oで希釈し、最終容量を10mLにします。
  5. 希釈反応液10mLを濃度カラムに注入する( 材料表参照)。
  6. カラムから [125I]R91150 を 300 μL の無水エタノールで溶出します。
  7. エタノールをRTの真空遠心分離機で40分間インキュベートしてエタノールを蒸発させる。
  8. [125I]R91150を含む残渣を300 μLの生理食塩水で希釈する。
  9. HPLCによりトレーサーを精製する。450nmでの標準校正を使用して溶出時間を決定し、単一の放射性ピークを単離する。無線TLCの単一ピークを測定することにより、放射化学的純度を確立する。放射化学物質の純度が98%を超えていることを確認してください。

5. 動物の準備

  1. TgF344-ADラット(雄または雌、生後2〜24ヶ月)を3%イソフルランを含む誘導チャンバー内で計量し、麻酔する。深く麻酔をかけたら、チャンバー内のイソフルラン流量を2%(0.4 L/分、100% O2)に下げます。
  2. 麻酔ノーズコーンを備えた予め温められたベッドに動物を置きます。イソフルランを2%(0.4L/分、100%O2)に維持する。
  3. 動物の目にアイゲル潤滑剤を塗布し、呼吸モニタリングを介して麻酔の深さを確認する。必要に応じて麻酔を調整する。
  4. 尾静脈に24Gカテーテル挿入を行う。

6. スペクト取得

  1. 動物を、38°Cに設定した温度制御された加熱パッドを備えたカメラベッドに移します(図1E)。
  2. 動物の頭をバイトバーに固定し、頭の支柱を固定します。
  3. 1 分間の 60 フレームで構成される 60 分間のスキャンで実験を設定します。手順 1 で設定した他のすべてのパラメーターを再利用します。[ 画像の更新 ]ボタンをクリックして、動物の位置を更新します。
  4. 3次元の画面の下部にある3つの画像の助けを借りてカーソルをスライドさせてスキャン領域を設定します。
  5. 500 μLの放射性放射性放射性トレーサー([125 I]CLINDEまたは[125I]R91150)を注入し、チューブに300 μLの滅菌0.9%NaClを流す。同時にクリック 取得の開始 スキャンを開始します。
  6. スキャン時間中は、呼吸数モニタリングで動物を一定の麻酔下で維持してください。必要に応じてイソフルランの流れを調整します。
  7. スキャンが終わったら、麻酔をかけられた動物を素早く断頭して安楽死させます。

7. スキャンの再構築

  1. スキャン再構築ソフトウェア( 材料表を参照)を開き、データセットを開き、スキャンのフォルダに作成された[filename].parametersファイルを探します。
  2. 目的の同位体を選択します。 Listmode パラメーターを使用すると、このステップで複数の同位体を選択できます。
  3. 次のパラメータを選択します:0.4 mmボクセルサイズ、4(POS-EM)サブセット、6回の反復(24ME-EM相当)、ポストフィルタなし、および対応する同位体減衰補正。NIfTI への出力形式を選択し、[ SPECT 再構築の開始 ] を選択します。

8. ラット脳抽出

  1. スキャン手順と同じ麻酔イベントで、呼吸数を監視して動物の深い麻酔状態を確認した後、ギロチンによる断頭に進み、頭を解剖ベンチに素早く移します。
  2. はさみで、頭の上の皮膚を背中から前へ目の真ん中まで慎重に切ります。
  3. 頭蓋骨の基部と頸椎の周りの余分な筋肉を切り取ります。
  4. 次に、頭蓋骨の後ろの穴、孔マグナムにハサミの刃を1枚慎重に入れ、手術用ペンチで頭蓋骨の後ろの部分を外します。
  5. その後、外科用ペンチで、頭蓋骨の上部を慎重に取り外します。古い雄ラットの頭蓋骨は厚く、脳への損傷を避けるために小さな断片として取り除くことができます。
  6. 髄膜をハサミで慎重に切ります。髄膜は、抽出プロセス中に脳を損傷することができます;予防措置として削除してください。
  7. 頭蓋骨の上部を取り除いた後、動物の頭を回し、小さな平らなヘラで、視神経と三叉神経を切って慎重に脳を引き抜きます。
  8. 氷上で解剖するために、平らで清潔なガラス表面に脳を慎重に移します。
  9. 平らな金属のヘラとカミソリの刃を使用して、脳の関心領域を解剖します。組織を2mL遠沈管に入れ、得られた組織を秤量する。細胞単離のために脳セクションを直接使用するか、後で使用するために液体窒素中で迅速に凍結する。

9. 細胞分離

  1. 清潔で無菌の環境で作業してください。クラスIIバイオセーフティキャビネット(BSC)の下で作業することをお勧めします。BSCに導入される手袋とすべての機器が無菌であることを確認してください。
  2. 細胞を細胞選別用に調製するには、Jaclyn M. Schwarz14 のプロトコルに従います。
    注:この実験では、市販の神経解離キット( 材料表を参照)を細胞調製に使用した。
    1. サンプルを1 mLのHBSS(Ca-およびMg-フリー)を含む2 mL遠沈管に入れ、次いで遠心分離機(300 x g、2分、室温= RT)し、ペレットを乱すことなく上清を除去した。
    2. 1900 μLの酵素ミックス-1を加え、5分ごとに反転させてチューブを攪拌しながら、37°Cで15分間インキュベートします。
    3. 30 μLの酵素ミックス-2を加え、ピペット1( 材料表を参照)で穏やかに30回前後に攪拌する。その後、5分毎に反転させてチューブを攪拌しながら37°Cで15分間インキュベートする。
    4. ピペット2と前後に穏やかに混合し、次いでピペット3を37°Cで10分間インキュベートする前に、組織を解離させた。
    5. 80 μm のセルストレーナーで細胞をろ過し、10 mL の HBSS (Ca-および Mg-フリー) を加えます。遠心分離機(300 x g、10分、RT)し、ペレットを乱すことなく上清を除去した。
    6. ミエリン枯渇のために、ペレットを400μLのミエリン除去緩衝液(材料表を参照)で再懸濁し、次いで100μLのミエリン除去ビーズ(材料表を参照)を加えてから、4°Cで15分間インキュベートする。
    7. 5mLのミエリン除去緩衝液を加え、遠心分離機(300 x g、10分、RT)し、ペレットを乱すことなく上清を除去した。
    8. 500 μLのミエリン除去バッファーを加え、チューブを磁場カラムに入れます。カラムを1 mLのミエリン除去バッファーで4回洗浄する。
    9. 遠心分離機(300 x g、2分、RT)し、ペレットを乱すことなく上清を除去した。ボルテックスで短時間(2秒)細胞を解離させ、5μLのFcブロックCD32を加えた。ボルテックスを再度、4°Cで5分間インキュベートした。
    10. 目的の一次抗体の混合物を100μL加える;4°Cで20分間インキュベートする。
    11. 遠心分離機(350 x g、5分間、4°C)でペレットを乱すことなく上清を除去した。チューブを柔らかい紙に逆さまに拭きます。
    12. 短い渦(2秒)の後、100μLの二次抗体ミックスを加え、4°Cで15分間インキュベートする。
    13. 2mLのミエリン除去緩衝液を加え、遠心分離機(350 x g、5分、4°C)で、ペレットを乱すことなく上清を除去した。チューブを柔らかい紙に逆さまに拭きます。細胞を250 μLの滅菌PBSに再懸濁し、細胞選別に直接進む。

10. セルの仕分け

  1. マイクロフュージチューブに500 μLの滅菌PBSを用意し、選別した細胞を回収します。
  2. 細胞溶液1000 μLあたり10 μLのヘキストを加えて、生細胞の核を着色し、それらを死細胞と区別する。
  3. できるだけ早く細胞を4°Cの細胞選別機に移す。
  4. まず、前方散乱と側方散乱で細胞をソートし、次にヘキスト陽性細胞をソートします。次に、目的の抗体に基づいて細胞を選別する。陽性に染色された細胞を別々に集める。陽性細胞と自己蛍光細胞を区別するようにしてください。
  5. 対象のプールごとにソートされたセルの数をカウントします。

11. ガンマカウント

  1. SPECT校正に使用したのと同じファントム溶液10 μLでγ計数システムを校正しますが、1 mLの水で希釈します。
    注:ファントム溶液は、γ計数システムの精度が向上しているため、希釈されています。
  2. 選別された細胞のチューブをγ計数システムに置き、製造元のプロトコルに従ってγ計数を続行します。

Access restricted. Please log in or start a trial to view this content.

結果

WTラットは、片側的LPS注射後に[125I]CLINDE放射性トレーサーによるインビボSPECTスキャンを経験した(図2)。このスキャン(放射性トレーサー注射後45〜60分の画像からの集計データを使用)は、LPS注射部位(図2A)における[125I]CLINDEの結合が脳の対側領域(図2B)よりも高いことを示した。FACS-RTTを受けたエキソビ...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

我々の知る限り、この技術は、細胞レベルでの放射性トレーサーのin vivo結合変化のよりよい理解を可能にするアプローチを最初に記述した。このプロトコルは、[125 I]クリンド(TSPO)または[125 I]R91150(5HT 2AR)を例として使用して細胞レベルで放射性トレーサー結合を定量化するマルチスケール法を記載している。

この技術は、LPSによって誘導?...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者らは利益相反がないと宣言しています。

謝辞

この研究はスイス国立科学財団(助成金番号320030-184713)の支援を受けた。著者BBTとKCは、Velux Foundation(プロジェクト番号1123)の支援を受けています。著者STはスイス国立科学財団(早期ポスドクモビリティ奨学金、いいえ。P2GEP3_191446)、マックス・クロエッタ教授(臨床医学プラス奨学金)、ジャン・アンド・マドレーヌ・ヴァシュー財団。

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
Acetic acidSigma-Aldrich
AcetonitrileSigma-Aldrich
BioVetBioVetSoftware for vitals check
Bondclone C18 reverse-phase columnPhenomenex, Schlieren, Switzerland
Des-SurUniversity Hospital of GenevaVirucide
Fc Block / anti-CD32BD BiosciencesBDB550270Reactivity for rat
FITC-conjugated anti-rat CD90Biolegend202504Reactivity for rat
HeparinB. BraunB01AB01
HPLCKnauer
Insyte-W 24 GA 0.75 IN 0.7 x 19 mmBD Biosciences32131224 G catheter
IsofluraneBaxterZDG9623
LacryviscAlcon2160699
LS ColumnsMiltenyi Biotec130-042-401
MACS MultiStandMiltenyi Biotec130-042-303
Micropore soft tape3MF51DA01
MILabs-Uspect IIMILabsSoftware for SPECT Camera
MoFlo AstriosBeckman CoulterCell sorter
Myelin Removal Beads IIMiltenyi Biotec130-096-733Contains beads and myelin removal buffer.
NaCl 0.9% Sterile solutionB. Braun395202
Neural Dissociation Kit (P)Miltenyi Biotec130-092-628Contains the enzyme mixes, pipets 1, 2 and 3.
Nylon Mesh SheetAmazonCMN-0074-10YD40 inch width, 80 micron size mesh
Peracetic acidSigma-Aldrich
QuadroMACS SeparatorMiltenyi Biotec130-090-976
R91150 précursorCERMN
Sep-Pak C18 ColumnWatersConcentration column
Sodium iodide Na125PerkinElmer
Tributylin precursorCERMN
U-SPECT Rec2.38cMILabsVersion Rec2.38cSoftware for SPECT images reconstruction
USPECT IIMILabsSpect Camera
Wizard 3"PerkinElmerGamma counter

参考文献

  1. Nichols, E., et al. regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 18 (1), 88-106 (2019).
  2. Kinney, J. W., et al. Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's & Dementia. 4, New York, N. Y. 575-590 (2018).
  3. D'Amelio, M., Puglisi-Allegra, S., Mercuri, N. The role of dopaminergic midbrain in Alzheimer's disease: Translating basic science into clinical practice. Pharmacological Research. 130, 414-419 (2018).
  4. D'Amelio, M., Serra, L., Bozzali, M. Ventral tegmental area in prodromal Alzheimer's disease: Bridging the gap between mice and humans. Journal of Alzheimer's Disease: JAD. 63 (1), 181-183 (2018).
  5. Cohen, R. M., et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 33 (15), 6245-6256 (2013).
  6. Morrone, C. D., et al. Regional differences in Alzheimer's disease pathology confound behavioural rescue after amyloid-β attenuation. Brain: A Journal of Neurology. 143 (1), 359-373 (2020).
  7. Berkowitz, L. E., Harvey, R. E., Drake, E., Thompson, S. M., Clark, B. J. Progressive impairment of directional and spatially precise trajectories by TgF344-Alzheimer's disease rats in the Morris Water Task. Scientific Reports. 8 (1), 16153(2018).
  8. Koulousakis, P., vanden Hove, D., Visser-Vandewalle, V., Sesia, T. Cognitive improvements after intermittent deep brain stimulation of the nucleus basalis of meynert in a transgenic rat model for Alzheimer's disease: A preliminary approach. Journal of Alzheimer's Disease: JAD. 73 (2), 461-466 (2020).
  9. Tournier, B. B., et al. Spatial reference learning deficits in absence of dysfunctional working memory in the TgF344-AD rat model of Alzheimer's disease. Genes, Brain, and Behavior. , 12712(2020).
  10. Tournier, B. B., Tsartsalis, S., Ceyzériat, K., Garibotto, V., Millet, P. In vivo TSPO signal and neuroinflammation in Alzheimer's disease. Cells. 9 (9), (2020).
  11. Backes, H. [11C]raclopride and extrastriatal binding to D2/3 receptors. NeuroImage. 207, 116346(2020).
  12. Millet, P., et al. Quantification of dopamine D(2/3) receptors in rat brain using factor analysis corrected [18F]Fallypride images. NeuroImage. 62 (3), 1455-1468 (2012).
  13. Tsartsalis, S., et al. A modified simplified reference tissue model for the quantification of dopamine D2/3 receptors with [18F]Fallypride images. Molecular Imaging. 13 (8), (2014).
  14. Schwarz, J. M. Using fluorescence-activated cell sorting to examine cell-type-specific gene expression in rat brain tissue. Journal of Visualized Experiments: JoVE. (99), e52537(2015).
  15. Tournier, B. B., et al. Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding. Journal of Cerebral Blood Flow & Metabolism. 40 (6), 1242-1255 (2020).
  16. Tournier, B. B., et al. Astrocytic TSPO upregulation appears before microglial TSPO in Alzheimer's disease. Journal of Alzheimer's Disease: JAD. 77 (3), 1043-1056 (2020).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

TgF344 ADTSPO5HT2AR

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved