A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Fluorescence-Activated Cell Sorting-Radioligand Treated Tissue (FACS-RTT) is a powerful tool to study the role of the 18 kDa translocator protein or Serotonin 5HT2A-receptor expression in Alzheimer's Disease at a cellular scale. This protocol describes the ex-vivo application of FACS-RTT in the TgF344-AD rat model.
Glial cells probably have a considerable implication in the pathophysiology of neurodegenerative disorders, such as Alzheimer's disease (AD). Their alterations are perhaps associated with a pro-inflammatory state. The TgF344-AD rat strain has been designed to express human APP and human PS1ΔE9 genes, encoding for amyloid proteins Aβ-40 and Aβ-42 and displays amyloid pathology and cognitive deficits with aging. The TgF344-AD rat model is used in this study to evaluate the cellular origin of the 18 kDa translocator protein (TSPO, a marker of glial cell activation) binding, and the 5HT2A-receptor (5HT2AR) serotonin receptor levels that are possibly disrupted in AD. The technique presented here is Fluorescence-Activated Cell Sorting to Radioligand Treated Tissue (FACS-RTT), a quantitative cell-type-specific technique complementary to in vivo PET or SPECT or ex vivo/in vitro autoradiography techniques. It quantifies the same radiolabeled tracer used prior for imaging, using a γ counter after cytometry cell sorting. This allows determining the cellular origin of the radiolabeled protein with high cellular specificity and sensitivity. For example, studies with FACS-RTT showed that (i) the increase in TSPO binding was associated with microglia in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation, (ii) an increase in TSPO binding at 12- and 18-months was associated with astrocytes first, and then microglia in the TgF344-AD rats compared to wild type (WT) rats, and (iii) the striatal density of 5HT2AR decreases in astrocytes at 18 months in the same rat AD model. Interestingly, this technique can be extended to virtually all radiotracers.
Neurodegenerative diseases, such as Alzheimer's Disease (AD), are characterized by a neuronal loss associated with increased symptoms. AD, the most common cause of dementia, accounting 60%-70% of cases, affects around 50 million people worldwide1. At a neuropathological level, the two major characteristics of AD are the accumulation of extracellular amyloid-β (Aβ) plaques and intracellular Tau neurofibrillary tangles. Glial cell alterations have also been associated with AD2 and possible disruption of several neurotransmitter systems3,4.
The TgF344-AD rat line has been modified to model AD by expressing human APP and PS1ΔE9 transgenes, leading to soluble and insoluble Aβ-40 and Aβ-42 expression and amyloid plaque formation5. It also presents the accumulation of hyperphosphorylated forms of the Tau protein leading to tauopathy. From the age of 9-24 months, the rats progressively develop the pathological hallmarks of AD and a cognitive impairment5,6,7,8,9.
Positron Emission Tomography (PET), Single-Photon Emission computed Tomography (SPECT), and autoradiography are techniques based on the emission and quantification of γ rays. Radiotracers are quantified either in vivo (PET and SPECT) or ex vivo/in vitro (autoradiography). Those sensitive techniques have contributed to the understanding of mechanisms of several brain diseases, such as AD. Indeed, in terms of neuroinflammation, there are a lot of studies assessing 18 kDa Translocator Protein (TSPO), an in vivo neuroinflammation marker, with radiolabeled tracers such as [11C]-(R)-PK11195 or [11C]PBR28 (for review see10). In addition, alterations of neurotransmitter systems have been studied using radiotracers11,12,13.
However, those techniques do not determine the cellular origin of the radioactive signal. This could hamper the interpretation of the biological underpinnings of the alteration in the binding of a radioligand in PET/SPECT. For instance, in the case of TSPO studies of neuroinflammation, understanding whether the increase or decrease of TSPO is due to astrocytic or microglial changes is of paramount importance. The Fluorescence-Activated Cell Sorting to Radioligand Treated Tissue (FACS-RTT) technique was developed to get around these problems, allowing the assessment of radioligand binding in every cell type separately and the quantification of the target-protein density per cell. This innovative technique is consequently complementary and highly compatible with PET and SPECT imaging.
Here, this technique was applied along two axes: the study of neuroinflammation using TSPO-specific radioligands and assessing the serotonergic system. On the first axis, the aim was to understand the cellular origin of the TSPO signal in response to an acute inflammatory reaction. Therefore, FACS-RTT was used on the brain tissues of rats after the induction of neuroinflammation via a lipopolysaccharide (LPS) injection and following an in vivo [125I]CLINDE SPECT imaging study. Further, the same imaging and FACS-RTT protocol were applied on 12- and 24-month-old TgF344-AD rats and matching wild-type (WT) rats. The second axis aimed to determine the origin of serotoninergic system alterations in this rat model via ex vivo 5-HT2AR density assessment by cell type.
All experimental procedures were conducted in agreement with the Ethics Committee for Human and Animal Experimentation of the Canton of Geneva, the Cantonal Commission for Research Ethics (CCER), and the General Direction Of The Health Of The Canton Of Geneva (Switzerland), respectively. Data are reported following Animal Research: Reporting In-vivo Experiments (ARRIVE) guidelines.
1. SPECT camera preparation and calibration
2. Workspace setup for SPECT imaging
3. [125I]CLINDE radiotracer synthesis
CAUTION: Radioactivity can have sufficient ionizing energy to affect the atoms of the living cells and damage their genetic material (DNA).
4. [125I]R91150 radiotracer synthesis
NOTE: Ensure to follow the same security rules as mentioned in the CLINDE synthesis section.
5. Animal preparation
6. SPECT acquisition
7. Scan reconstruction
8. Rat brain extraction
9. Cell isolation
10. Cell sorting
11. Gamma counting
WT rats experienced in vivo SPECT scan with [125I]CLINDE radiotracer after a unilateral LPS injection (Figure 2). This scan (using summed data from images of 45-60 min post radiotracer injection) showed higher binding of [125I]CLINDE in the site of the LPS injection (Figure 2A) than in the contralateral region of the brain (Figure 2B). The ex vivo samples that underwent FACS-RTT confirmed thos...
To our knowledge, this technique was the first to describe an approach that allows a better understanding of in vivo binding alterations of a radiotracer at the cellular level. The protocol describes a multiscale method to quantify radiotracer binding at the cellular level using [125I]CLINDE (TSPO) or [125I]R91150 (5HT2AR) as examples.
This technique is robust and sensitive enough to precisely detect the cellular origin of a wide spectrum of glial cell...
The authors declare no conflicts of interest.
This work was supported by the Swiss National Science Foundation (grant no. 320030-184713). Authors BBT and KC are supported by the Velux Foundation (project n. 1123). Author ST received support from the Swiss National Science Foundation (Early Post-Doc Mobility Scholarship, no. P2GEP3_191446), the Prof Dr. Max Cloetta Foundation (Clinical Medicine Plus scholarship), and the Jean and Madeleine Vachoux Foundation.
Name | Company | Catalog Number | Comments |
Acetic acid | Sigma-Aldrich | ||
Acetonitrile | Sigma-Aldrich | ||
BioVet | BioVet | Software for vitals check | |
Bondclone C18 reverse-phase column | Phenomenex, Schlieren, Switzerland | ||
Des-Sur | University Hospital of Geneva | Virucide | |
Fc Block / anti-CD32 | BD Biosciences | BDB550270 | Reactivity for rat |
FITC-conjugated anti-rat CD90 | Biolegend | 202504 | Reactivity for rat |
Heparin | B. Braun | B01AB01 | |
HPLC | Knauer | ||
Insyte-W 24 GA 0.75 IN 0.7 x 19 mm | BD Biosciences | 321312 | 24 G catheter |
Isoflurane | Baxter | ZDG9623 | |
Lacryvisc | Alcon | 2160699 | |
LS Columns | Miltenyi Biotec | 130-042-401 | |
MACS MultiStand | Miltenyi Biotec | 130-042-303 | |
Micropore soft tape | 3M | F51DA01 | |
MILabs-Uspect II | MILabs | Software for SPECT Camera | |
MoFlo Astrios | Beckman Coulter | Cell sorter | |
Myelin Removal Beads II | Miltenyi Biotec | 130-096-733 | Contains beads and myelin removal buffer. |
NaCl 0.9% Sterile solution | B. Braun | 395202 | |
Neural Dissociation Kit (P) | Miltenyi Biotec | 130-092-628 | Contains the enzyme mixes, pipets 1, 2 and 3. |
Nylon Mesh Sheet | Amazon | CMN-0074-10YD | 40 inch width, 80 micron size mesh |
Peracetic acid | Sigma-Aldrich | ||
QuadroMACS Separator | Miltenyi Biotec | 130-090-976 | |
R91150 précursor | CERMN | ||
Sep-Pak C18 Column | Waters | Concentration column | |
Sodium iodide Na125 | PerkinElmer | ||
Tributylin precursor | CERMN | ||
U-SPECT Rec2.38c | MILabs | Version Rec2.38c | Software for SPECT images reconstruction |
USPECT II | MILabs | Spect Camera | |
Wizard 3" | PerkinElmer | Gamma counter |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved