このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
A protocol is presented for the synthesis of persistent luminescent nanomaterials (PLNPs) and their potential applications in rewritable displays and artistic processing utilizing the afterglow effect under ultraviolet light (365 nm) irradiation.
Persistent luminescent nanoparticles (PLNPs) possess the capabilities to maintain extended longevity and robust emission even after the excitation has ceased. PLNPs have been widely used across various domains, including information displays, data encryption, biological imaging, and artistic decoration with sustained and vivid luminosity, providing boundless possibilities for a variety of innovative technology and artistic projects. This protocol focuses on an experimental procedure for the hydrothermal synthesis of PLNPs. The successful synthesis of enduring luminescent nanomaterials with Mn2+ or Cr3+ serving as a luminescent center in Zn2GeO4: Mn (ZGO: Mn) or ZnGa2O4: Cr highlights the universality of this synthetic method. On the other hand, the optical properties of ZGO: Mn can be changed by adjusting the pH of precursor solutions, demonstrating the tunability of the protocol. When charged with ultraviolet (UV) at a wavelength of 365 nm for 3 min and then stopped, PLNPs exhibit the remarkable capacity to generate afterglow efficiently and consistently, which makes them ideal for making two-dimensional rewritable displays and three-dimensional transparent, luminous artworks. This protocol outlined in this paper provides a feasible method for the synthesis of persistent luminescent nanoparticles for further illumination and imaging applications, opening up novel prospects for the fields of science and art.
Persistent luminescence (PL) is a unique optical process that can store energy from ultraviolet light, visible light, X-rays, or other excitation sources and then release it in the form of photon emission for seconds, minutes, hours, or even for days1. The discovery of continuous luminous phenomenon originated from the Song dynasty in ancient China 1000 years ago when a painter accidentally discovered a painting that glowed in the dark. It was later found that some natural raw materials and minerals could absorb sunlight and then glow in the dark and can even be made into fascinating glowing pearls2. However, the first a....
1. Synthesis of Zn2GeO4: Mn PLNPs
The synthesis diagram of Zn2GeO4: Mn (ZGO: Mn) PLNPs is shown in Figure 1. The amphiphilic polymer Poly-ethylene glycol (PEG) is added to modify the ligand-free Zn2GeO4: Mn (ZGO: Mn) nanorods to better dissolve in MMA medium. First, the transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) images of ZGO: Mn whose pH is 9.4 are collected (Figure 1), and then dynamic light scatt.......
This article introduces a synthesis method for persistent luminescent nanomaterials and polymerization for color rendering applications. The materials showed extremely stable optical properties and a visible afterglow after ceasing excitation of ultraviolet light. A persistent luminescent nanomaterial (Zn2GeO4: Mn) was prepared using a hydrothermal method with different pH (Figure 1A). The TEM image showed that ZGO: Mn PLNPs whose pH is 9.4 were rod-shaped with an avera.......
The authors thank the funding of the National Natural Science Foundation of China (82001945), the Shanghai Pujiang Program (20PJ1410700), and the starting grant of ShanghaiTech University. The authors thank the Centre for High-resolution Electron Microscopy (ChEM), School of Physical Science and Technology, ShanghaiTech University (No. EM02161943) for the material characterization support. The authors thank the Analytical Instrumentation Center (#SPST-AIC10112914), School of Physical Science and Technology, ShanghaiTech University for the spectral test support and XRD test support. The authors also thank Prof. Jianfeng Li for the help with the material characterizatio....
Name | Company | Catalog Number | Comments |
azobisisobutyronitrile (99%) | Macklin | A800354 | Further purification required |
methyl methacrylate(99%) | Sigma-Aldrich | M55909 | Further purification required |
deionized water | Merck | ZEQ7016T0C | Milli-Q Direct Water Purification System |
alkaline aluminum oxide (100-200 mesh) | Macklin | A800033 | |
ammonium hydroxide (25%-28%, wt) | Macklin | A801005 | |
beaker | Synthware | B220100 | |
chromium(III) nitrate nonahydrate (99.95%) | Aladdin | C116448 | |
centrifuge | ThermoFisher Scientific | 75004250 | |
column | Synthware | C184464CR | |
digital camera | Canon | EOS M50 Mark II | |
electric thermostaticdrying oven | Longyue | LDO-9036A | |
ethanol (99.7%) | Greagent | 1158566 | |
gallium nitrate hydrate(99.9%) | Aladdin | G109501 | |
germanium oxide (99.99%) | Sinopharm Chemical ReagentCo., Ltd | 51009860 | |
glass rod | Sinopharm Chemical ReagentCo., Ltd | 91229401 | |
powder X-Ray Diffractometer | D2 PHASER DESKTOP XRD | BRUKER | |
manganese nitrate (98%) | Macklin | M828399 | |
methanol (99.5%) | Greagent | 1226426 | |
nitric acid (65.0-68.0%, wt) | Sinopharm Chemical ReagentCo., Ltd | 10014508 | |
pH meter | Shanghai Leici Sensor Technology Co., Ltd | PHS-3C | |
polyethylene glycol (300, Mw) | Adamas | 01050882(41713A) | |
sealing film | Parafilm | 2025722 | |
sodium hydroxide (GR) | Sinopharm Chemical ReagentCo., Ltd | 10019764 | |
spectrometer | Horiba | Fluorolog-3 | |
transmission electron microscope | JEOL | JEM-1400 Plus | |
transmission electron microscope | JEOL | 2100 Plus | |
triangular funnel | Synthware | F181975 | |
ultrasound machine | centrifuge | JP-040S | |
zinc chloride (98%) | Greagent | 01113266/G81783A |
Explore More Articles
This article has been published
Video Coming Soon
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved