脳タンパク質合成の地域の速度の測定は、開発中および神経可塑性の間に起こるような長期的な変化に対する脳の応答をトレースすることができます。.我々の方法は、測定が完全に定量的であるという利点を有し、彼らは目覚めの振る舞い動物で行われる。定量的な自動放射技術は全ての脳領域の測定を同時に可能にする。
この手順を実証するのは、私の研究室のポストバカロレアフェローのアニタ・トロシアンと、動物外科医の天建黄です。テキストプロトコルで詳述されているように手術の準備をして、この手順を開始します。手術段階では、手術用はさみを使用して、左大腿部の上部内側から、大腿動脈と静脈を明らかにする中線に向かって1センチメートルの切開を行います。
外科的皮膚フックが切開の両側に引き込む。皮膚フックを手術段階にテーピングして固定します。十分な水分を維持するために、露出した領域に無菌0.9%塩化ナトリウムを適用します。
鉗子を使用して解剖を鈍らせ、大腿動脈と静脈の小さな部分の周りに結合組織を分離する。慎重に動脈と静脈を分離します。今、切開の最も外側の点で大腿静脈と動脈の両方の下に吸収可能な縫合糸の1本の鎖を糸に鉗子を使用する。
両端が均等になるように縫合糸を途中で引っ張ります。鼠径部のより近位の点では、鉗子を使用して大腿静脈の下に第2縫合糸を通す。血流を制限するために使用される半結び目を穏やかに結びます。
ストランドAとストランドBの間のポイントで、鉗子を使用して大腿静脈の下に第3縫合糸を通します。血流を制限するために使用される完全な結び目をそっと結びます。静脈を引き裂かないように注意してください。
ストランドBを軽く引っ張って血流を制限する。血液制限を維持するために、静かにストランドBを引っ張るために止血を使用してください。今度は、PEチューブのノンカットエンドを32ゲージ針とヘパリン化した生理食音で満たされた1ミリメートルのシリンジに接続します。
カテーテルを洗い流して気泡を取り除く。大腿静脈の制限された領域に小さな穴をマイクロハサミで切り、フラッシュされたPE 8チューブの斜めの端をストランドBに向かって慎重に挿入します。カテーテルを含む静脈の周りにストランドBを締めます。
ストランド C を使用して、カテーテルの周りに追加の結び目を結びます。この結び目が大腿動脈を捕捉しないことを確認してください。同じ手順を使用してPE 10カテーテルを左大腿動脈に挿入する前に、血液でチューブを部分的に満たすために注射器バレルを静かに引き戻します。
大腿静脈と動脈カテーテルの両方が確保されたら、ストランドAを両方のカテーテルの周りの結び目に結びます。余分な縫合糸をすべて切断し、皮膚フックを取り除いた後、凝固を防ぐためにヘパリン化された生理液で動脈カテーテルを洗い流す。両方のカテーテルの端部を焼灼してシールを作成します。
マウスを起こしやすい位置に置き、露出した領域に生理食塩分を塗布する首の基部に小さな切開を行います。頸部切開部から大腿切開まで、中空の金属棒を下皮に挿入します。中空の棒を通して、首の切開からカテーテルを蛇行する。
中空の棒を取り除いた後、縫合糸で大腿部切開を閉じ、続いて手術後の鎮痛を伴う。30センチメートルの柔軟な中空チューブを通してカテーテルを蛇行し、皮膚の下のスプリングテザーのボタンを縫合する前にスプリングテザーを作り、続いて手術後の鎮痛を行います。マウスを回転マウントと腕で透明な円筒形の容器に移動し、回復期間中にマウスを収容します。
マウスを暖かく保つために容器の下に手ウォーマーを置きます。テキストプロトコルで詳細に説明したサンプルを採取して、実験の最初にマウスが正常な生理状態にあることを確認します。トレーサーを静脈内に投与するには、片方の腕に接続されたC14ラベル付きロイシントレーサーを保持する注射器を持つ注射器を持つYコネクタと、100〜200マイクロリットルの無菌生理食塩水を持つ注射器を使用して、もう一方の腕に接続された静脈ラインを洗い流す。
Y コネクタを静脈ラインに接続します。同時にストップウォッチを開始し、トレーサーを注入し、時給動脈血液サンプルを収集することによって研究を開始します。注射直後に静脈ラインを生理液で洗い流します。
実験の最初の2分間を通して、血液サンプルを1~7個連続で収集します。7つのサンプルを採取した後、残りの各サンプルの前に30マイクロリットルのデッドスペース血液を採取する。サンプル8~14は、それぞれ3分、5分、10分、15分、30分、45分、60分で採取する。
実験中のある時点で、テキストプロトコルに詳述されているように、三尖ロイシンとノロイシンを含む内部標準の3つのチューブを処理する。血漿ロイシン濃度を定量化するには、ナトリウムカチオン交換カラムを備えたHPLCシステムと、オルソフタルアルデヒドおよび小麦粉検出によるポストカラム誘導体化を使用します。ロイシン曲線の下の面積は、サンプル中のロイシンの濃度に比例します。
サンプル中のロイシン濃度を定量化するために、標準との比較を使用してください。次に、液体シンチレーションカウンターを使用して、血漿サンプル中のトリチウムおよびC14の1分間あたりの崩壊を定量化する。これらの濃度を用いて、動脈血漿中の循環とその比活性の時間経過から標識ロイシンC14のクリアランス曲線を構築する。
グラフから、動脈血漿中のロイシン比活性を標識した統合C14を算出する。定量的オートラジオグラフィーを行うために、脳部20ミクロンの厚さを準備する。マイナス20°Cのクライオスタットによって脳を切り離す。
ゼラチンコーティングスライド上のマウントセクションを解凍します。スライドの固定後、X線フィルムカセットにスライドを並べ、以前に較正されたC 14ラベルのメチルメタクリレート規格のセットを並べてください。暗い部屋と安全な光の下に、側面と標準の上にX線フィルム、エマルジョン側の一部を置きます。
カセットを密封し、黒い交換袋に入れます。メーカーの指示に従ってフィルムを開発します。背景が不均一で、定量化に影響を与える可能性があるため、フィルムの自動開発はお勧めできません。
フィルム上の較正された標準のセットの光学密度値に基づいて、光学密度対組織C14濃度の較正曲線を構築する。これらのデータを多項式に適合します。第二または第三次多項式は非常によく合います。
特定の脳領域を分析するには、脳アトラスと比較して、関心領域またはROIを6〜8セクションに配置します。ROI 内のピクセルの光学的密度を、すべてのセクションに記録します。検量線に基づいて、各画素における組織C14濃度を算出する。
最後に、時tおよびランバでの未標識および標識ロイシンの動脈血漿濃度の比率の積分中のROI中の平均組織C14濃度から脳タンパク合成の地域率を計算する。血漿から来る組織前駆体プール中のロイシンの割合。ここに示されているのは、タンパク質合成の阻害剤であるアニソマイシンで処理された動物と比較して、動物を処理した車両からの代表的な画像である。
タンパク質合成の速度は、画像内の暗闇のレベルに比例します。アニソマイシンは、この方法の特異性を示す脳タンパク質合成の測定率を大幅に低下させる。ここでは、デジタル化されたオートラジオグラムは、海馬と視床下部のレベルで目を覚ますマウスから示されています。
暗い領域は、脳タンパク質合成のより高い地域率を有する。ここに示されているのは、裏海馬のレベルで目を覚ます動作制御マウスからのデジタル化されたオートラジオグラムです。脳タンパク質合成の速度は、カラーバーに従って画像に色塗りされています。
この手順を試みる間、動物が測定中に正常な生理学的状態であることを確認することが重要です。我々の方法論は、脆弱X症候群のような神経発達障害におけるタンパク質合成の調節不支配を既に実証している。また、アルツハイマー病のような変性変化や状態のための有用なマーカーである可能性があります。.
タンパク質合成法は、切換切り替えにおける免疫細胞化学と組み合わせて使用して、タンパク質合成の変化と特定のタンパク質の局所的変化を相関させることができます。要約すると、定量的な自動ラジオグラフィックスL-1 C 14ロイシン法は、生体内でのタンパク質合成の地域的な速度を正確に決定するのに理想的である。それは、生体内条件に対する正確さと適用性の点でかなりの利点を提供します。