JoVE Logo

로그인

JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.

기사 소개

  • 요약
  • 초록
  • 서문
  • 프로토콜
  • 결과
  • 토론
  • 공개
  • 감사의 말
  • 자료
  • 참고문헌
  • 재인쇄 및 허가

요약

Here we present a community accepted protocol in multimedia format for subretinally injecting a bolus of RPE cells in rats and mice. This approach can be used for determining rescue potentials, safety profiles, and survival capacities of grafted RPE cells upon implantation in animal models of retinal degeneration.

초록

전기 자극으로 광 변환 외측 망막에서 발생 콘로드와 ​​감광체와 망막 색소 상피 (RPE) 세포에 의해 주로 수행된다. RPE는 감광체 및 사망 또는 RPE 세포의 기능 장애 연령 관련 황반 변성 (AMD), 명 55 세 이상에서 영구 실명의 주요 원인의 중요 특성 인 지원을 제공한다. AMD에 대한 치료법이 발견되지 않은 반면, 병변 RPE 건강한 눈 주입은 효과적인 치료를 증명할 수 있고, RPE 세포의 다수 용이 다 능성 줄기 세포로부터 생성 될 수있다. RPE 세포 전달의 안전성과 효능에 관한 몇 가지 흥미로운 질문 여전히 동물 모델에서 시험 될 수 있고, RPE를 주입하기 위해 사용되는 잘 용인 프로토콜이 개발되었다. 여기에 기재된 기술은 다양한 여러 연구 그룹에 의해 사용 된과 제 날카로운 바늘의 눈 구멍을 만드는 것을 포함한다. 블루와 다음 주사기세포로드 NT 바늘 구멍을 통해 삽입하고 부드럽게 RPE에 닿을 때까지 유리체를 통과한다. 비교적 간단하며 최소한의 설비를 필요이 주입 방법을 사용하여, 우리는 동물 모델에서 광 수용체 변성증의 상당량을 방지 호스트 RPE 사이에서 줄기 세포 유래 RPE 세포를 효율적이고 일관성있게 통합을 달성. 실제 프로토콜의 일부 있지만, 우리는 또한 주입하는 방법과 세포가 생체 내 이미징을에 사용하여 망막 하 공간에 주입되었는지 확인하는 방법에 의해 유도 된 외상의 범위를 결정하는 방법에 대해 설명합니다. 마지막으로,이 프로토콜의 사용은 RPE 세포에 한정되지 않는다; 이는 망막 하 공간에 임의의 화합물 또는 세포를 주입하는 데에 이용 될 수있다.

서문

The sensory retina is organized in functional tiers of neurons, glia, and endothelial cells. Photoreceptors at the back of the retina are activated by light; through phototransduction they convert photons into electrical signals that are refined by interneurons and transmitted to the visual cortex in the brain. Phototransduction cannot occur without the coordinated efforts of Mueller glia and retinal pigment epithelium (RPE) cells. RPE are organized in a monolayer directly behind the photoreceptors and perform multiple and diverse functions integral to photoreceptor function and homeostasis. In fact, RPE and photoreceptors are so co-dependent that they are considered to be one functional unit. Death or dysfunction of RPE results in devastating secondary effects on photoreceptors and is associated with age-related macular degeneration (AMD), the leading cause of blindness in the elderly1,2.

While no cure has been discovered for AMD, several clinical studies have shown that RPE cell replacement may be a promising therapeutic option3-13. With the advent of stem cell technology, it is now possible to generate large numbers of RPE cells in vitro from embryonic and induced pluripotent stem cells (hES and hiPS) that strongly resemble their somatic counterparts functionally and anatomically14-26. Stem cell-derived RPE have also been shown to function in vivo by multiple independent groups, including our own, to significantly slow retinal degeneration in rat and mouse lines with spontaneous retinal degeneration16,18,21,22,25,28,29. This combination of clinical and preclinical supporting evidence is so compelling that several clinical trials to prevent retinal degeneration using stem cell-derived RPE cells are now ongoing30,31.

RPE can be readily derived from hES and/or hiPS and implanted in the subretinal space of rodents using various derivation and injection techniques32,33. (See Westenskow et al. for a methods paper in multimedia format demonstrating the directed differentiation protocol we employ)34. There are critical remaining questions regarding the safety, survival, and functional capacity of exogenously delivered RPE cells upon implantation, therefore the ability to perform subretinal injections in rodents is a critical skill16,18,21,29,36,37. The delivery of RPE is not trivial, and the field is divided on the most effective injection technique. The protocol we describe here is a simple and effective way to deliver of bolus of RPE cells subretinally, and was used in the first clinical trial for stem cell-derived RPE transplantation31. (The reader may also refer to another JoVE article by Eberle et al. for an alternative depiction of subretinal injections in rodents.38)

The technique outlined in this manuscript cannot be visualized and trauma is unavoidable (as with any subretinal injection technique). It is performed by making a hole just under the limbus vessels and inserting a blunt needle along a transscleral route to inject a bolus of cells under the diametrically opposed retina. The person doing the injection will feel resistance as the blunt needle touches the retina. The cells may be directly visualized after the injection, however, and the degree of the induced retinal detachment can be determined by labeling the RPE cells with a transient fluorescent marker and detecting them with a confocal scanning ophthalmoscope (cSLO). An optical coherence tomography (OCT) system can also be used to monitor the trauma and easily identify the injection site.

프로토콜

참고 : 모든 동물이 스크립스 연구소에 의해 설립 된 윤리 지침에 따라 처리 하였다.

사출 용 재료 1. 준비 (~ 20 분)

  1. 사전 따뜻한 세포 분리 솔루션 (바람직하게는 혈청 희석을 통해 비활성화되어 하나), 멸균 PBS, 문화 미디어 (표 1).
  2. 그것을 분해하고 15 분 동안 물에 부품을 끓여 무딘 바늘과 주사기를 소독.

사출에 대한 RPE 세포의 2. 준비 (~ 30 분 내지 1)

  1. 37 ℃에서 5-8 분 동안 예열 세포 분리 용액을 사용하여 RPE 세포를 분리.
  2. 여전히 연결되어 있는지 어떤을 해제 부드럽게 세포를 긁어.
  3. 배양액 대용량 (15ml의 튜브를 기입) 해리 용액을 비활성화하고 카운트하기로 세포를 희석.
  4. 펠릿 세포 5 분 동안 800 XG에 원심 분리기.
  5. 멸균 미리 예열 PBS에서 / μL 200,000 세포 (0.5 μL 볼륨에서 10 만 셀을 제공하기 위해)에서 세포를 재현 탁하고 1.5 ml의 마이크로 원심 튜브로 전송합니다.
  6. 선택적으로, 살아있는 세포 과도 형광 마커를 추가하고 30 ~ 45 분 동안 37 ℃에서 배양한다.
  7. 세포의 0.5 μL와 무딘 바늘과 주사기를로드합니다. 가능한 빨리 세포 주입한다.

3. 하위 망막 사출 (~ 사출 당 5 분)

참고 : 가능하면 윤부 선박 시각화 훨씬 용이하기 때문에, 성인 흰쥐와 기술을 배웁니다. 보다 쉽게​​ 주사 부위의 시각화를 용이하게하기 위해 (세포를 주입하기 전에) 배울 때 빠른 그린 용액을 주입한다.

  1. 쥐를 마취. 100 ㎎ / ㎖ 케타민 10 ㎎ / ㎖ 자일 라진 (xylazine) (20 μL / 10g 본체 w의 복강 내 주사를 사용하여이소 플루오 란 흡입을 통해 여덟)는 설치류를 기동 흡입기의 주둥이와 눈에 주입하기 어렵 기 때문에.
    1. 동물 깊이 그것의 발 중 하나를 집어 마취되어 있는지 확인합니다. 이 flinches 경우, 몇 분 이상 기다린 후 망막 주입을 시작하기 전에 다시 시도하십시오.
  2. 주입되는 눈이 천장을 향하도록 옆에 쥐를 놓습니다.
  3. 눈 소켓 (임시 안구 돌출)에서 튕겨 나올 그냥 귀 위의 턱으로 가볍게 눈꺼풀에 피부 평행 스트레칭 두 손가락으로 머리를 잡고 더 접근하기가되도록 해부 현미경 부드럽게 피부를 스트레칭 그래서 눈이 약간 소켓에서 팝업됩니다 (그림 1C 참조). 목에 너무 가까이 쥐를 잡지 마십시오.
  4. 30 G 날카로운 일회용 사전 멸균 바늘, 선박이 충돌하는 경우, 출혈입니다 b (즉시 윤부 아래에 구멍을중요한 전자와 나중에 구멍을 찾기 어려울 수)과 각도로 바늘 (그림 1D)으로 렌즈에 손이 닿지 않도록. 발생 날카로​​운 (또는 무딘) 바늘 또는 즉시 백내장으로 렌즈를 만지지 마십시오.
    참고 : 주사는 두 사람이 잘 작동. 이런 식으로 한 사람은 구멍이 어디에 초점을 유지하기 위해 날카로운 일회용 바늘로 첫 번째 구멍을 만든 후 주입 작업을하는 사람이 무딘 바늘 주사기를 전달할 수 있습니다.
  5. 머리에 그립을 유지하면서 눈에서 일회용 날카로운 바늘을 집어 넣으십시오. 구멍이 정확히 기억하십시오.
  6. 중 미세 조작기에 무딘 바늘로 사전로드 된 주사기를 장착하거나 손을 잡고, 렌즈를 만지지 조심스럽게 눈을 통해 밀어 다시는주의하면서 구멍을 통해 무딘 바늘 주사기의 끝 부분을 삽입 한 후 아주 부드럽게 느낌 저항 (그림 1D)까지.
  7. 케이최소한으로 모든 움직임을 eeping, 조심스럽게 천천히 망막 하 공간에 RPE 세포를 주입.
    참고 : RPE / 망막 박리가 유도 될 것이다; 이 불가피하다. 그러나, 청소기 주입 박리를 최소화 크게 재 부착 (도 1E)의 기회를 향상시킨다. 모든 과장된 움직임은 망막에 다시 바늘을 이동 할 수 있으며, 옆으로 움직임이 망막에 손상을 줄 수 있습니다. 분사 펌프의 사용은 선택적이지만, 매우 정확한 전달을 허용한다.
  8. 천천히 주사기를 집어 넣으십시오. 눈 보습을 적용하는 것은 수화 눈을 떼지 삭제합니다.
  9. 이 흉골 드러 누움을 회복 할 때까지 동물을 모니터링하기 위해 계속합니다. 무인 동물을 떠나거나 흉골 드러 누움을 회복 할 때까지 다른 경고 동물 케이지에 반환하지 않습니다.

결과

우리는이 논문에서 기재된 기술을 사용하여 신속하고 지속적으로 설치류 망막 하 공간 내로 RPE 세포의 현탁액을 제공 할 수있다. 필요한 것은 아니지만, 외상은 크게 그림 1A & B의 미세 조작기와 같은 설정을 사용하여 최소화 할 수 있습니다. 일시적인 안구 돌출 그림 1C에서와 같이 쥐를 잡으십시오. 미세 조작기 또는 손에 의해 수행되는 경우에 단계는 동일; 이 ...

토론

이 문서에서 우리는 쥐와 생쥐에서 부유 망막 색소 상피 세포의 망막 주사를 수행하기위한 비교적 간단한 방법을 설명합니다. 이 프로토콜은 적은 외상에 번역 할 기술로 쉽게 배울 수 많은 경험이다 (그림 3, 이것은 더 나은 주사 중 하나를 나타냅니다) 미세 조작기는 (그림 1A)를 사용하는 경우에는 특히. 모든 외상은 cSLO 간섭 단층 시스템 (그림 2) 가능한 경?...

공개

None of the authors have any commercial disclosures to declare.

감사의 말

We wish to thank Alison Dorsey for helping to develop the subretinal injection technique. We also acknowledge the National Eye Institute (NEI grants EY11254 and EY021416), California Institute for Regenerative Medicine (CIRM grant TR1-01219), and the Lowy Medical Research Institute (LMRI) for very generous funding for this project.

자료

NameCompanyCatalog NumberComments
2-Mercaptoethanol (55 mM)Gibco 21985-02350 ml x 1 
Cell ScapersVWR89260-222Case x 1
CellTracker Green CMFDAMolecular ProbesC3455250 µg x 20
DPBS, no calcium, no magnesiumGibco14190-144500 ml x 1 
Fast GreenSigma-AldrichF725825 g x 1 
Genteal Geldrops Moderate to Severe Lubricant Eye Drops Walmart406094125 ml x 1
Hamilton Model 62 RN SYRHamilton87942Syringe x 1 
Hamilton Needle 33 G, 0.5", point 3 (304 stainless steel)Hamilton7803-05Needles x 6
Knockout DMEMGibco10829-018500 ml x 1 
KnockOut Serum ReplacementGibco10828-028500 ml x 1 
L-Glutamine 200 mMGibco25030-081100 ml x 1
Magnetic StandLeica Biosystems39430216Stand x 1
MEM Non-Essential Amino Acids Solution 100X Gibco11140-050100 ml x 1
MicromanipulatorLeica Biosystems3943001Manipulator x 1
Penicillin-Streptomycin (10,000 U/ml)Gibco15140-122100 ml x 1
Slip Tip Syringes without Needles BD  (3 ml)  VWRBD309656Pack x 1
Specialty-Use Needles BD  (30 G, 1")VWRBD305128Box x 1
TrypLE Express Enzyme (1X), no phenol redGibco12604013100 ml x 1

참고문헌

  1. Bird, A. C. Therapeutic targets in age-related macular disease. The Journal of Clinical Investigation. 120 (9), 3033-3041 (2010).
  2. Jong, P. T., Med, N. .. . E. n. g. l. .. . J. .. . Age-related macular degeneration. 355 (14), 1474-1485 (2006).
  3. Abe, T. Auto iris pigment epithelial cell transplantation in patients with age-related macular degeneration: short-term results. The Tohoku Journal Of Experimental Medicine. 191 (1), 7-20 (2000).
  4. Algvere, P. V., Berglin, L., Gouras, P., Sheng, Y. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 232, 707-716 (1994).
  5. Binder, S. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest. Ophthalmol. Vis. Sci. 45 (11), 4151-4160 (2004).
  6. Binder, S. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am. J. Ophthalmol. 133 (2), 215-225 (2002).
  7. Juan, E., Loewenstein, A., Bressler, N. M., Alexander, J. Translocation of the retina for management of subfoveal choroidal neovascularization II: a preliminary report in humans. Am. J. Ophthalmol. 125 (5), 635-646 (1998).
  8. Falkner-Radler, C. I. Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. British Journal of Ophthalmology. 95 (3), 370-375 (2011).
  9. Joussen, A. M. How complete is successful 'Autologous retinal pigment epithelium and choriod translocation in patients with exsudative age-related macular degeneration: a short-term follow-up' by Jan van Meurs and P.R. van Biesen. Graefes. Arch. Clin. Exp. Ophthalmol. 241 (12), 966-967 (2003).
  10. Lai, J. C. Visual outcomes following macular translocation with 360-degree peripheral retinectomy. Arch. Ophthalmol. 120 (10), 1317-1324 (2002).
  11. Machemer, R., Steinhorst, U. H. Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration? Graefes. Arch. Clin. Exp. Ophthalmol. 231 (11), 635-641 (1993).
  12. MacLaren, R. E. Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology. 114 (3), 561-570 (2007).
  13. Peyman, G. A. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surgery. 22 (2), 102-108 (1991).
  14. Buchholz, D. E. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 27 (10), 2427-2434 (2009).
  15. Carr, A. J. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol. Vis. 15 (4), 283-295 (2009).
  16. Carr, A. J. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 4 (12), e8152 (2009).
  17. Hirami, Y. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 458 (3), 126-131 (2009).
  18. Idelson, M. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 5 (4), 396-408 (2009).
  19. Klimanskaya, I. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 6 (3), 217-245 (2004).
  20. Kokkinaki, M., Sahibzada, N., Golestaneh, N. Human Induced Pluripotent Stem-Derived Retinal Pigment Epithelium (RPE) Cells Exhibit Ion Transport, Membrane Potential, Polarized Vascular Endothelial Growth Factor Secretion, and Gene Expression Pattern Similar to Native RPE. Stem Cells. 29 (5), 825-835 (2011).
  21. Krohne, T. Generation of retinal pigment epithelial cells from small molecules and OCT4-reprogrammed human induced pluripotent stem cells. Stem Cells Translational Medicine. 1 (2), 96-109 (2012).
  22. Lund, R. D. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 8 (3), 189-199 (2006).
  23. Meyer, J. S. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proceedings of the National Academy of Sciences. 106 (39), 16698-16703 (2009).
  24. Osakada, F. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci. 122 (17), 3169-3179 (2009).
  25. Vugler, A. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp. Neurol. 214 (2), 347-361 (2008).
  26. Westenskow, P. D. Using flow cytometry to compare the dynamics of photoreceptor outer segment phagocytosis in iPS-derived RPE cells. Invest. Ophthalmol. Vis. Sci. 53 (10), 6282-6290 (2012).
  27. Zarbin, M. A. Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 122 (10), 598-614 (2004).
  28. Li, Y., et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Molecular Medicine. 18, 1312-1319 (2012).
  29. Wang, N. K. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa). Transplantation. 89 (8), 911-919 (2010).
  30. Ramsden, C. M. Stem cells in retinal regeneration: past, present and future. Development. 140 (12), 2576-2585 (2013).
  31. Schwartz, S. D. Embryonic stem cell trials for macular degeneration: a preliminary report. The Lancet. 379 (9817), 713-720 (2012).
  32. Carr, A. J. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends in Neurosciences. 36 (7), 385-395 (2013).
  33. Westenskow, P., Friedlander, M., Werne, J. S., Chalupa, L. M. Ch. 111. The New Visual Neurosciences. , 1611-1626 (2013).
  34. Westenskow, P., Sedillo, Z., Friedlander, M. Efficient Derivation of Retinal Pigment Epithelium Cells from iPS. J. Vis. Exp. , .
  35. Furhmann, S., Levine, E. M., Friedlander, M. Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development. 127 (21), 4599-4609 (2000).
  36. Lu, B. Long-Term Safety and Function of RPE from Human Embryonic Stem Cells in Preclinical Models of Macular Degeneration). Stem Cells. 27 (9), 2126-2135 (2009).
  37. Zhao, T., Zhang, Z. -. N., Rong, Z., Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature. 474 (7350), 212-215 (2011).
  38. Eberle, D., Santos-Ferreira, T., Grahl, S., Ader, M. Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina. Journal Of Visualized Experiments. , e50932 (2014).
  39. Huber, G. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest. Ophthalmol. Vis. Sci. 50, 5888-5895 (2009).
  40. Kim, K. H. Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography. Journal of Vision. 53 (8), 4644-4656 (2008).
  41. Pennesi, M. E. Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 53, 4644-4656 (2012).
  42. Fisher, S. K., Lewis, G. P., Linberg, K. A., Verardo, M. R. Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Progress in Retinal And Eye Research. 24 (3), 395-431 (2005).
  43. Hu, Y. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Research. 48 (4), 186-191 (2012).
  44. Diniz, B. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest. Ophthalmol. Vis. Sci. 54 (7), 5087-5096 (2013).

재인쇄 및 허가

JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기

허가 살펴보기

더 많은 기사 탐색

95

This article has been published

Video Coming Soon

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유