Source: Jose Roberto Moreto, Jaime Dorado, and Xiaofeng Liu, Department of Aerospace Engineering, San Diego State University, San Diego, CA
Military jet fighters and projectiles can fly at incredible speeds that exceed the speed of sound, which means they are traveling at a supersonic speed. The speed of sound is the speed at which a sound wave propagates through a medium, which is 343 m/s. Mach numbers are used to gauge the flight speed of an object relative to the speed of sound.
An object traveling at the speed of sound would have a Mach number of 1.0, whereas an object traveling faster than the speed of sound has a Mach number greater than 1.0. The compressibility effects of air must be accounted for when traveling at such speeds. A flow is considered compressible when the Mach number is greater than 0.3. In this demonstration, Mach 2.0 supersonic flow over a cone will be analyzed by visualizing the formation of shock waves and compression waves in compressible flow using a Schlieren system.
1. Visualizing shock waves using a schlieren imaging system
In this demonstration, a cone with a half angle of 15 degrees was subjected to a supersonic flow at Mach 2.0. In Figure 3, a shock wake and an expansion fan over the cone is observed. Theoretically, an oblique shock should form at the cone surface at an angle of 33.9°. The experimental angle was measured to be 33.6°, as shown by the red line in Figure 3B. Compared to the theoretical data, the percent error was found to be less than 1%. In addition, this flow visualization method
The schlieren imaging technique is a classical optical flow visualization technique based on density changes in the fluid. It is a simple system built with concave mirrors, a knife-edge, and a light source. With this system, supersonic flow features, such as shock waves and expansion waves, can be visualized. This technique, however, has sensitivity limits to low-speed flows.
The schlieren imaging method may be used for a variety of applications, especially in the study of fluid mechanics and
건너뛰기...
JoVE 소개
Copyright © 2024 MyJoVE Corporation. 판권 소유