A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Here we present a protocol to induce radiation-induced skin fibrosis in the hind limb of mice and perform post-irradiation measurements of chronic impairment via limb excursion and gait index analyses to evaluate the functional outcome. The model elucidates radiation-related skin fibrosis mechanisms and is useful in subclinical therapeutic studies.
Radiation-induced skin fibrosis (RISF) can result from a plethora of scenarios including cancer therapy, accidental exposure, or acts of terrorism. Radioactive beams can penetrate through the skin and affect the structures in their path including skin, muscles, and internal organs. Skin is the first structure to get exposed to radiation and is susceptible to develop chronic fibrosis, which is challenging to treat. Currently, limited treatment options show moderate efficacy in mitigating radiation-related skin fibrosis. A key factor hindering the development of effective countermeasures is the absence of a convenient and robust model that could allow for translation of the experimental findings to humans. Here, a robust and reproducible murine hind limb skin fibrosis model has been established for prophylactic and therapeutic evaluation of possible agents for functional and molecular recovery.
The right hind limb was irradiated using a single dose of 40 (Gray) Gy to induce skin fibrosis. Subjects developed edema and dermatitis in the early stages proceeded by visible skin constriction. Irradiated limbs showed a significantly reduced limb range of motion in the following weeks. In late stages, acute side effects subsided, yet chronic fibrosis persisted. A gait index was performed as an additional functional assay, which demonstrated the development of functional impairment. These non-invasive methods demonstrated reliable measurements for tracing fibrosis progression, which is supported by histological analyses. The radiation dose, application, and post-irradiation analyses employed in this model offer a vigorous and reproducible method for studying radiation-induced skin fibrosis and testing the efficacy of therapeutical agents.
The skin is the largest organ of the body, covering and protecting the body from hazards. It has three distinct layers: epidermis, dermis, and hypodermis. Each layer has its unique functions: the epidermis prevents dehydration and microbial invasion; the dermis has a rich network of cells, and an extracellular matrix that provides tensile strength and elasticity1; the dermal layer contains the sensory receptors, hair follicles, glands, and vessels for lymphatic and capillary networks. The hypodermis or subcutaneous tissue, with its abundance of adipose tissue, contours the body and distributes mechanical stress2,3,4.
Radiation, generated as a result of accidents, war, terrorism, or therapeutical applications, penetrate through the body in a linear progressive nature, leading the skin to be the first organ to come in contact. The threat of such incidents has intensified due to the increased use of radioactive materials in industries, medical facilities, and military installations5. Clinically, radiation damage to the skin is characterized by cutaneous radiation syndrome (CRS), one of four sub-syndromes of acute radiation syndrome (ARS). The response of the skin to ionizing radiation has important implications for treatment and protection from further damage6. Concomitant injuries such as burns and trauma further complicate the clinical outcome when combined with radiation injuries7. The extent of skin exposure to radiation correlates to a point-of-no-return threshold, from which the impairment of other organs results in single or multiple organ failure, and ultimately leads to patient death8,9. Cutaneous radiation injury is comprised of an acute and a chronic phase. Acute radiation injury clinically manifests as erythema, skin edema, dermatitis, blistering, epidermal denudation, dry or wet desquamation, ulceration, and changes in the hair and nails. The chronic phase is manifested as dermal atrophy, fibrosis, chronic ulceration, and telangiectasias10,11. In general, acute effects are predominately manifested in the epidermis, while chronic effects are most prominent in the dermis. Acute reaction to radiation exposure leads to a marked decrease in mitotic activity within 12 h of exposure, followed by hyperemia, cell enlargement, vacuolization, nuclear pyknosis, and fragmentation4,12.
Radiation doses exceeding 40 Gy result in moist desquamation and loss of epidermis, leading to an increased susceptibility to infections13. In addition, skin exposure to radiation induces cytokine production, triggering an inflammatory immune response in the dermal layer. Prominent inflammatory mediators include interleukins (IL-1, IL-3, IL-5, IL-6, and IL-8) and tumor necrosis factor-α (TNFα)14. Failure in the resolution of inflammation can eventually result in fibrosis development at the site of radiation injury15. Additional physical wounds or thermal injuries further aggravate this fibrotic response, extending through the muscle layer16. Transforming growth factor-β (TGFβ) is the key cytokine in fibrosis development17. Currently, very few treatment options show promising results, and the majority might have challenges with patient compliance. Further research exploring the cellular and molecular responses of the skin to different radiation doses will improve the understanding of the radiation-induced skin pathophysiology and enhance the development of new therapies.
To facilitate the clinical translation of research outcomes in preclinical models in alleviating radiation-induced injury to the skin and soft tissues, designing highly relevant experimental models of therapeutic interventions following irradiation is crucial. Both in vitro and in vivo models of radiation-induced injury have been described, including cell culture models of irradiated endothelial cells18,19, fibroblasts20, or keratinocytes19 and in vivo rodent, swine, and non-human primate animal models. Rodent models are widely used in radiation research due to their similarities in response to radiation injury with humans and their flexibility of genetic manipulation21. Radiation dose requirements are higher in rodents than in humans when seeking similar outcomes: desquamation, fibrosis, and necrosis16,22. Description of scoring criteria to measure the response to radiation has further enhanced the adoption of rodent models of radiation skin injury21,23.
Current research in the preclinical setting focuses on understanding the mechanisms of radiation-induced skin injury and developing therapeutical options. Thus, establishing a robust and reproducible preclinical model to create the radiation insult with high clinical translatability is essential. This work describes a murine model of skin fibrosis with optimized radiation dose and delivery technique. Our model, which combines functional, histological, and molecular measurements, can be used to effectively study the mechanism of fibrosis development and investigate new therapeutical options.
Ethical animal use was approved by the Institutional Animal Care and Use Committee (IACUC), which acts in compliance with the Animal Welfare Act. Animals were housed in an Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) approved facility and treated according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals.
1. Anesthesia
2. Skin area preparation
3. Irradiation procedure
4. Visual monitoring of fibrosis development
5. Measurement of leg excursion as a functional outcome of fibrosis
6. Measurement of gait functional index
7. Euthanasia
8. Histology and downstream analyses 17
9. Statistics
Establishment and optimization of the current irradiation protocol resulted in a consistent and reproducible induction of fibrosis in mice. Right limbs of the mice were positioned and secured within the radiation field on the day of irradiation, and 40 Gy of radiation was administered.
The development of functional impairment in skin was monitored by capturing images every week, post-irradiation. Photos showed that the optimized protocol created fibrosis by day 40 with 95% confidence. An examp...
Skin injury is a likely outcome of accidental or medical treatment-related exposure to radiation. Nuclear reactors possess an accidental breach risk due to human error or natural disasters like Chernobyl and Fukushima26,27. Therapeutical dosing for cancer treatment is the most common exposure, which uses fractionated repeated dose regimens that risk causing radiation-related fibrosis in the treated areas. This common chronic adverse reaction can be prevalent in u...
The authors have no competing financial interests or other conflicts of interest related to this work.
This work is funded by research grants from the Department of Defense W81XWH-19-PRMRP-DA, NIAID/NIH Grant 5R21AI153971-02, and PSF/MTF Grant 603902.
Name | Company | Catalog Number | Comments |
10% Formalin | Fischer Scientific | 23-427098 | |
Bolus | Orfit | 8333.SO1/R | |
Clipper | Kent Scientific Corp. | CL8787-KIT | |
CO2 | Various | ||
CO2 Chamber | E-Z Systems Inc. | E-22000 | |
Depilatory Cream | Church & Dwight Co., Inc. | Nair | |
Digital Camera | Wolfang | GA100 | |
Eppendrof Tubes | Eppendorf | 22364111 | |
Eye Lubricant | Dechra | Puralube Ophthalmic Ointment | |
Gauze | Covidien | 682252 | |
Image Processing Program | NIH | Image J | |
Isoflurane | Dechra | USP Inhalation Anesthetic | |
Linear Accelaerator | Varian Medical Systems, Inc. | 23EX | |
PBS | Cytiva | SH30256.LS | |
Pentobarbital | Akorn Pharmaceuticals | Nembutal | |
Protractor | Westcott | 550-1120 | |
Small Animal Anesthesia System | E-Z Systems Inc. | EZ-SA800 | Single animal system |
Spreadsheet Software | Microsoft | Excel | |
Surgical Scissors | Medline | MDS0834111 | |
Surgical Tape | 3M | 1538-1 | |
Tape | 3M | H-1113 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved