Zaloguj się

To determine the energy of a simple harmonic oscillator, consider all the forms of energy it can have during its simple harmonic motion. According to Hooke's Law, the energy stored during the compression/stretching of a string in a simple harmonic oscillator is potential energy. As the simple harmonic oscillator has no dissipative forces, it also possesses kinetic energy. In the presence of conservative forces, both energies can interconvert during oscillation, but the total energy remains constant. The total energy for a simple harmonic oscillator is equal to the sum of the potential and kinetic energy and is proportional to the square of the amplitude. It can be expressed in the following form:

Equation1

The magnitude of the velocity in a simple harmonic motion is obtained by rearranging and solving the equations of the total energy.

Equation2

Manipulating this expression algebraically gives the following:

Equation3

where

Equation4

Notice that the maximum velocity depends on three factors and is proportional to the amplitude. If the displacement is maximal, the velocity will also be maximal. Additionally, the maximum velocity is greater for stiffer systems because they exert greater force for the same displacement. This observation can be seen in the expression for the maximum velocity. The maximum velocity is proportional to the square root of the force constant. Finally, the maximum velocity is smaller for objects with larger masses since the maximum velocity is inversely proportional to the square root of the mass.

Tagi
Simple Harmonic MotionEnergyPotential EnergyKinetic EnergyHooke s LawTotal EnergyAmplitudeMaximum VelocityConservative ForcesOscillationForce ConstantMass

Z rozdziału 15:

article

Now Playing

15.4 : Energy in Simple Harmonic Motion

Oscillations

6.7K Wyświetleń

article

15.1 : Prosty ruch harmoniczny

Oscillations

8.7K Wyświetleń

article

15.2 : Charakterystyka prostego ruchu harmonicznego

Oscillations

10.5K Wyświetleń

article

15.3 : Oscylacje wokół pozycji równowagi

Oscillations

5.1K Wyświetleń

article

15.5 : Częstotliwość układu sprężyna-masa

Oscillations

5.1K Wyświetleń

article

15.6 : Prosty ruch harmoniczny i jednostajny ruch kołowy

Oscillations

4.1K Wyświetleń

article

15.7 : Rozwiązywanie problemów: energia w prostym ruchu harmonicznym

Oscillations

1.1K Wyświetleń

article

15.8 : Proste wahadło

Oscillations

4.4K Wyświetleń

article

15.9 : Wahadło skrętne

Oscillations

5.1K Wyświetleń

article

15.10 : Wahadło fizyczne

Oscillations

1.5K Wyświetleń

article

15.11 : Pomiar przyspieszenia ziemskiego

Oscillations

453 Wyświetleń

article

15.12 : Tłumione oscylacje

Oscillations

5.5K Wyświetleń

article

15.13 : Rodzaje tłumienia

Oscillations

6.3K Wyświetleń

article

15.14 : Oscylacje wymuszone

Oscillations

6.4K Wyświetleń

article

15.15 : Pojęcie rezonansu i jego charakterystyka

Oscillations

4.9K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone