Accedi

To determine the energy of a simple harmonic oscillator, consider all the forms of energy it can have during its simple harmonic motion. According to Hooke's Law, the energy stored during the compression/stretching of a string in a simple harmonic oscillator is potential energy. As the simple harmonic oscillator has no dissipative forces, it also possesses kinetic energy. In the presence of conservative forces, both energies can interconvert during oscillation, but the total energy remains constant. The total energy for a simple harmonic oscillator is equal to the sum of the potential and kinetic energy and is proportional to the square of the amplitude. It can be expressed in the following form:

Equation1

The magnitude of the velocity in a simple harmonic motion is obtained by rearranging and solving the equations of the total energy.

Equation2

Manipulating this expression algebraically gives the following:

Equation3

where

Equation4

Notice that the maximum velocity depends on three factors and is proportional to the amplitude. If the displacement is maximal, the velocity will also be maximal. Additionally, the maximum velocity is greater for stiffer systems because they exert greater force for the same displacement. This observation can be seen in the expression for the maximum velocity. The maximum velocity is proportional to the square root of the force constant. Finally, the maximum velocity is smaller for objects with larger masses since the maximum velocity is inversely proportional to the square root of the mass.

Tags
Simple Harmonic MotionEnergyPotential EnergyKinetic EnergyHooke s LawTotal EnergyAmplitudeMaximum VelocityConservative ForcesOscillationForce ConstantMass

Dal capitolo 15:

article

Now Playing

15.4 : Energy in Simple Harmonic Motion

Oscillations

6.7K Visualizzazioni

article

15.1 : Moto armonico semplice

Oscillations

8.7K Visualizzazioni

article

15.2 : Caratteristiche del moto armonico semplice

Oscillations

10.5K Visualizzazioni

article

15.3 : Oscillazioni intorno a una posizione di equilibrio

Oscillations

5.1K Visualizzazioni

article

15.5 : Frequenza del sistema molla-massa

Oscillations

5.1K Visualizzazioni

article

15.6 : Moto armonico semplice e moto circolare uniforme

Oscillations

4.1K Visualizzazioni

article

15.7 : Problem Solving: Energia in Moto Armonico Semplice

Oscillations

1.1K Visualizzazioni

article

15.8 : Pendolo semplice

Oscillations

4.4K Visualizzazioni

article

15.9 : Pendolo Torsionale

Oscillations

5.1K Visualizzazioni

article

15.10 : Pendolo Fisico

Oscillations

1.5K Visualizzazioni

article

15.11 : Misurazione dell'accelerazione dovuta alla gravità

Oscillations

453 Visualizzazioni

article

15.12 : Oscillazioni smorzate

Oscillations

5.5K Visualizzazioni

article

15.13 : Tipi di smorzamento

Oscillations

6.3K Visualizzazioni

article

15.14 : Oscillazioni forzate

Oscillations

6.4K Visualizzazioni

article

15.15 : Concetto di Risonanza e sue Caratteristiche

Oscillations

4.9K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati