S'identifier

To determine the energy of a simple harmonic oscillator, consider all the forms of energy it can have during its simple harmonic motion. According to Hooke's Law, the energy stored during the compression/stretching of a string in a simple harmonic oscillator is potential energy. As the simple harmonic oscillator has no dissipative forces, it also possesses kinetic energy. In the presence of conservative forces, both energies can interconvert during oscillation, but the total energy remains constant. The total energy for a simple harmonic oscillator is equal to the sum of the potential and kinetic energy and is proportional to the square of the amplitude. It can be expressed in the following form:

Equation1

The magnitude of the velocity in a simple harmonic motion is obtained by rearranging and solving the equations of the total energy.

Equation2

Manipulating this expression algebraically gives the following:

Equation3

where

Equation4

Notice that the maximum velocity depends on three factors and is proportional to the amplitude. If the displacement is maximal, the velocity will also be maximal. Additionally, the maximum velocity is greater for stiffer systems because they exert greater force for the same displacement. This observation can be seen in the expression for the maximum velocity. The maximum velocity is proportional to the square root of the force constant. Finally, the maximum velocity is smaller for objects with larger masses since the maximum velocity is inversely proportional to the square root of the mass.

Tags
Simple Harmonic MotionEnergyPotential EnergyKinetic EnergyHooke s LawTotal EnergyAmplitudeMaximum VelocityConservative ForcesOscillationForce ConstantMass

Du chapitre 15:

article

Now Playing

15.4 : Energy in Simple Harmonic Motion

Oscillations

6.7K Vues

article

15.1 : Mouvement harmonique simple

Oscillations

8.7K Vues

article

15.2 : Caractéristiques du mouvement harmonique simple

Oscillations

10.5K Vues

article

15.3 : Point d'équilibre d'une oscillation

Oscillations

5.1K Vues

article

15.5 : Fréquence du système ressort-masse

Oscillations

5.1K Vues

article

15.6 : Mouvement harmonique simple et mouvement circulaire uniforme

Oscillations

4.1K Vues

article

15.7 : Résolution de problèmes : énergie dans un mouvement harmonique simple

Oscillations

1.1K Vues

article

15.8 : Pendule simple

Oscillations

4.4K Vues

article

15.9 : Pendule de torsion et pendule physique

Oscillations

5.1K Vues

article

15.10 : Pendule physique

Oscillations

1.5K Vues

article

15.11 : Mesure de l’accélération due à la gravité

Oscillations

453 Vues

article

15.12 : Oscillations amorties

Oscillations

5.5K Vues

article

15.13 : Types d'amortissement

Oscillations

6.3K Vues

article

15.14 : Oscillations forcées

Oscillations

6.4K Vues

article

15.15 : Caractéristiques de la résonance

Oscillations

4.9K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.