Anmelden

To determine the energy of a simple harmonic oscillator, consider all the forms of energy it can have during its simple harmonic motion. According to Hooke's Law, the energy stored during the compression/stretching of a string in a simple harmonic oscillator is potential energy. As the simple harmonic oscillator has no dissipative forces, it also possesses kinetic energy. In the presence of conservative forces, both energies can interconvert during oscillation, but the total energy remains constant. The total energy for a simple harmonic oscillator is equal to the sum of the potential and kinetic energy and is proportional to the square of the amplitude. It can be expressed in the following form:

Equation1

The magnitude of the velocity in a simple harmonic motion is obtained by rearranging and solving the equations of the total energy.

Equation2

Manipulating this expression algebraically gives the following:

Equation3

where

Equation4

Notice that the maximum velocity depends on three factors and is proportional to the amplitude. If the displacement is maximal, the velocity will also be maximal. Additionally, the maximum velocity is greater for stiffer systems because they exert greater force for the same displacement. This observation can be seen in the expression for the maximum velocity. The maximum velocity is proportional to the square root of the force constant. Finally, the maximum velocity is smaller for objects with larger masses since the maximum velocity is inversely proportional to the square root of the mass.

Tags
Simple Harmonic MotionEnergyPotential EnergyKinetic EnergyHooke s LawTotal EnergyAmplitudeMaximum VelocityConservative ForcesOscillationForce ConstantMass

Aus Kapitel 15:

article

Now Playing

15.4 : Energy in Simple Harmonic Motion

Oscillations

6.7K Ansichten

article

15.1 : Einfache harmonische Bewegung

Oscillations

8.7K Ansichten

article

15.2 : Eigenschaften der einfachen harmonischen Bewegung

Oscillations

10.5K Ansichten

article

15.3 : Oszillationen um eine Gleichgewichtsposition

Oscillations

5.1K Ansichten

article

15.5 : Häufigkeit des Feder-Masse-Systems

Oscillations

5.1K Ansichten

article

15.6 : Einfache harmonische Bewegung und gleichmäßige Kreisbewegung

Oscillations

4.1K Ansichten

article

15.7 : Problemlösung: Energie in einfacher harmonischer Bewegung

Oscillations

1.1K Ansichten

article

15.8 : Einfaches Pendel

Oscillations

4.4K Ansichten

article

15.9 : Torsionspendel

Oscillations

5.1K Ansichten

article

15.10 : Physikalisches Pendel

Oscillations

1.5K Ansichten

article

15.11 : Messung der Beschleunigung durch die Schwerkraft

Oscillations

453 Ansichten

article

15.12 : Gedämpfte Schwingungen

Oscillations

5.5K Ansichten

article

15.13 : Arten der Dämpfung

Oscillations

6.3K Ansichten

article

15.14 : Erzwungene Schwingungen

Oscillations

6.4K Ansichten

article

15.15 : Konzept der Resonanz und ihre Eigenschaften

Oscillations

4.9K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten