Войдите в систему

To determine the energy of a simple harmonic oscillator, consider all the forms of energy it can have during its simple harmonic motion. According to Hooke's Law, the energy stored during the compression/stretching of a string in a simple harmonic oscillator is potential energy. As the simple harmonic oscillator has no dissipative forces, it also possesses kinetic energy. In the presence of conservative forces, both energies can interconvert during oscillation, but the total energy remains constant. The total energy for a simple harmonic oscillator is equal to the sum of the potential and kinetic energy and is proportional to the square of the amplitude. It can be expressed in the following form:

Equation1

The magnitude of the velocity in a simple harmonic motion is obtained by rearranging and solving the equations of the total energy.

Equation2

Manipulating this expression algebraically gives the following:

Equation3

where

Equation4

Notice that the maximum velocity depends on three factors and is proportional to the amplitude. If the displacement is maximal, the velocity will also be maximal. Additionally, the maximum velocity is greater for stiffer systems because they exert greater force for the same displacement. This observation can be seen in the expression for the maximum velocity. The maximum velocity is proportional to the square root of the force constant. Finally, the maximum velocity is smaller for objects with larger masses since the maximum velocity is inversely proportional to the square root of the mass.

Теги
Simple Harmonic MotionEnergyPotential EnergyKinetic EnergyHooke s LawTotal EnergyAmplitudeMaximum VelocityConservative ForcesOscillationForce ConstantMass

Из главы 15:

article

Now Playing

15.4 : Energy in Simple Harmonic Motion

Oscillations

6.7K Просмотры

article

15.1 : Простое гармоническое движение

Oscillations

8.7K Просмотры

article

15.2 : Характеристики простого гармонического движения

Oscillations

10.5K Просмотры

article

15.3 : Колебания вокруг равновесного положения

Oscillations

5.1K Просмотры

article

15.5 : Частота системы пружина-масса

Oscillations

5.1K Просмотры

article

15.6 : Простое гармоническое движение и равномерное круговое движение

Oscillations

4.1K Просмотры

article

15.7 : Решение проблем: энергия в простом гармоническом движении

Oscillations

1.1K Просмотры

article

15.8 : Простой маятник

Oscillations

4.4K Просмотры

article

15.9 : Торсионный маятник

Oscillations

5.1K Просмотры

article

15.10 : Физический маятник

Oscillations

1.5K Просмотры

article

15.11 : Измерение ускорения под действием силы тяжести

Oscillations

453 Просмотры

article

15.12 : Затухающие колебания

Oscillations

5.5K Просмотры

article

15.13 : Виды демпфирования

Oscillations

6.3K Просмотры

article

15.14 : Вынужденные колебания

Oscillations

6.4K Просмотры

article

15.15 : Понятие резонанса и его характеристики

Oscillations

4.9K Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены