JoVE Logo

Zaloguj się

22.6 : Pojedyncze wykresy przepływu

Wykresy przepływu sygnału oferują uproszczone i intuicyjne podejście do przedstawiania systemów sterowania, zapewniając alternatywę dla tradycyjnych schematów blokowych. Te wykresy wykorzystują gałęzie do symbolizowania systemów i węzły do ​​przedstawiania sygnałów, skutecznie ilustrując relacje i interakcje w systemie.

W grafie przepływu sygnału gałęzie oznaczają funkcje przenoszenia systemu, podczas gdy węzły reprezentują sygnały. Kierunek przepływu sygnału jest oznaczony strzałkami, a odpowiadająca mu funkcja przenoszenia jest zapisana obok każdej strzałki. W przeciwieństwie do schematów blokowych, w których sumujące węzły obejmują znaki ujemne oznaczające odejmowanie, grafy przepływu sygnału włączają te znaki ujemne bezpośrednio do funkcji przenoszenia.

Pierwszym krokiem w konwersji schematu blokowego na wykres przepływu sygnału jest zidentyfikowanie sygnałów systemowych. Sygnały te są następnie prezentowane jako węzły na wykresie przepływu sygnału. Identyfikacja i narysowanie pierwszych węzłów dla każdego sygnału w systemie jest kluczowe w tym procesie konwersji. Następnie połącz te węzły z gałęziami, które reprezentują funkcje przejścia systemu, zapewniając dokładne przedstawienie kierunku przepływu sygnału.

Na przykład w schemacie blokowym z wieloma pętlami sprzężenia zwrotnego:

  1. Zacznij od ustanowienia węzłów dla każdego sygnału w pętlach sprzężenia zwrotnego.
  2. Połącz węzły z gałęziami, które przechwytują funkcje przejścia i ich kierunki. Znaki ujemne na węzłach sumujących na schemacie blokowym są włączane do funkcji przejścia w grafie przepływu sygnału.

Ostatnim krokiem w konwersji diagramów blokowych na wykresy przepływu sygnału jest uproszczenie grafu. Uproszczenie to uzyskuje się poprzez wyeliminowanie sygnałów pośrednich, które mają tylko jedną gałąź przychodzącą i jedną wychodzącą, co zmniejsza złożoność grafu i ułatwia jego analizę.

Po ustaleniu wykresu przepływu sygnału można zastosować regułę Masona do obliczenia funkcji przejścia układu. Obejmuje to:

  1. Określenie wszystkich możliwych ścieżek do przodu od węzła wejściowego do wyjściowego i obliczenie ich wzmocnień.
  2. Identyfikacja wszystkich pętli i ich wzmocnień oraz ustalenie, które pętle się nie stykają.
  3. Obliczanie Δ przy użyciu naprzemiennej serii sum wzmocnień pętli i wzmocnień pętli niestykających się. Δ_k oblicza się, wykluczając wzmocnienia pętli przecinające się z k^-tą ścieżką do przodu.
  4. Podstawiając te wartości do reguły Masona uzyskujemy funkcję przejścia.

Dzięki konwersji schematów blokowych na wykresy przepływu sygnału możliwa jest bardziej efektywna analiza układów sterowania, wykorzystująca systematyczne podejście opisane w regule Masona do określania funkcji przejścia.

Tagi

Signal flow GraphsControl SystemsBlock DiagramsTransfer FunctionsNodesBranchesSignal FlowFeedback LoopsMason s RuleSystem AnalysisSimplificationGainsNon touching LoopsConversion Process

Z rozdziału 22:

article

Now Playing

22.6 : Pojedyncze wykresy przepływu

Diagrams and Signal Flow Graphs

182 Wyświetleń

article

22.1 : Elementy schematów blokowych

Diagrams and Signal Flow Graphs

243 Wyświetleń

article

22.2 : Związek między równaniami matematycznymi a diagramami blokowymi

Diagrams and Signal Flow Graphs

169 Wyświetleń

article

22.3 : Redukcja schematu blokowego

Diagrams and Signal Flow Graphs

157 Wyświetleń

article

22.4 : Systemy wielowejściowe i wielowymiarowe

Diagrams and Signal Flow Graphs

96 Wyświetleń

article

22.5 : Reguła masońska

Diagrams and Signal Flow Graphs

260 Wyświetleń

article

22.7 : SFG Algebra

Diagrams and Signal Flow Graphs

107 Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone