Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We illustrate non-surgical delivery of test materials into the lungs of anesthetized mice via the trachea. This method permits lung exposure to bacterial and viral pathogens, cytokines, antibodies, beads, chemicals, or dyes. We further describe harvesting and processing of lungs and lung draining lymph nodes (LDLNs) for flow cytometry.
Phagocytic cells such as alveolar macrophages and lung dendritic cells (LDCs) continuously sample antigens from the alveolar spaces in the lungs. LDCs, in particular, are known to migrate to the lung draining lymph nodes (LDLNs) where they present inhaled antigens to T cells initiating an appropriate immune response to a variety of immunogens1,2. To model interactions between the lungs and airborne antigens in mice, antigens can be administered intranasally1,3,4, intratracheally5 or as aerosols6. Delivery by each route involves distinct technical skills and limitations that need to be considered before designing an experiment. For example, intranasal and aerosolized exposure delivers antigens to both the lungs and the upper respiratory tract. Hence antigens can access the nasal associated lymphoid tissue (NALT)7, potentially complicating interpretation of the results. In addition, swallowing, sneezing and the breathing rate of the mouse may also lead to inconsistencies in the doses delivered. Although the involvement of the upper respiratory tract may be preferred for some studies, it can complicate experiments focusing on events specifically initiated in the lungs. In this setting, the intratracheal (i.t) route is preferable as it delivers test materials directly into the lungs and bypasses the NALT. Many i.t injection protocols involve either blind intubation of the trachea through the oral cavity or surgical exposure of the trachea to access the lungs. Herein, we describe a simple, consistent, non-surgical method for i.t instillation. The opening of the trachea is visualized using a laryngoscope and a bent gavage needle is then inserted directly into the trachea to deliver the innoculum. We also describe procedures for harvesting and processing of LDLNs and lungs for analysis of antigen trafficking by flow cytometry.
1. Before the process, prepare and gather the following items
Note: LDLNs are small and hard to find. To learn how to find them, inject 200μl of the 1:20 diluted red fluorescent latex beads i.p into the mouse. The peritoneum drains to these LDLNs8. 24 hpi, expose the thoracic cavity of the mouse as described above. The LDLNs will appears pink from the beads that drained from the peritoneal cavity.
Note: We will be using this solution for demonstration of i.t injection technique.
2. Preparation and administration of mouse anesthetic
3. Intratracheal injection
4. Harvesting and processing Lung draining lymph nodes and lungs for flow cytometry
5. Representative Results:
LDCs and alveolar macrophages in the lungs acquire antigen from the alveolar spaces of the lungs immediately following i.t injection. Figure 3 shows percentage of CD11c+ (expressed on LDCs and alveolar macrophages) cells that are positive for fluorescently labeled Bacillus anthracis spores, 30 min post i.t injection. At this time, ~15.9% of CD45+CD11c+ cells in the lung single cell suspension harbored Bacillus anthracis spores (Figure 3, lower panels). For further characterization of CD11c+ cells in the lungs, refer to Kim and Braciale4. Fluorescently labeled beads are routinely used to assess trafficking of particulate antigens to LDLNs9. To assess this transport from lungs to LDLNs, fluorescent latex beads were injected i.t with LPS and LDLNs were analyzed at 24 hpi. About 4% of CD11chi cells in the LDLNs harbored fluorescent beads at 24hpi (Figure 4). These representative experiments show that this protocol can be efficiently used to track cells that acquire inhaled particulate antigens in the lungs and subsequently traffic them to the LDLNs.
Figure 1. Wooden platform for restraining mice during i.t injection. A wooden block was cut at an angle and metal bars were fitted, front view figure 1a) and side view figure 1b). A small piece of wire was wound around the metal bar to anchor the front incisors of the mouse. A piece of ribbon was attached to the platform to tie around the mouse to keep it in place during the procedure.
Figure 2. Gavage needle for i.t injection. A gavage needle (right) was bent at an angle of ˜135°(left) for i.t injection.
Figure 3. Percentage of all CD11c+ cells in the lungs that harbor i.t injected GFP expressing Bacillus anthracis (Sterne-p6GFP), 5hrs post challenge. AJ mice were challenge with 1x108 GFP- Bacillus anthracis spores and the lungs were analyzed at 5hrs post infection. The dot plots show percentage of CD11c+ lung cells that are positive for Bacillus anthracis.
Figure 4. Detection of fluorescent beads (yellow/green) in the lung draining lymph nodes 24 hours following i.t injection. AJ mice were given either PBS (left panel) or 5x109 Fluoresbrite YG Microspheres (0.5μm) with 10μg LPS (right panel) i.t and LDLNs were analyzed 24hpi. Representative dot plots show percentage of CD11chi cells in the LDLNs that harbor fluorescent beads plotted against an empty channel.
Access restricted. Please log in or start a trial to view this content.
We have utilized this protocol to study trafficking of Bacillus anthracis spores from the lungs to the LDLNs. For similar applications, the number of particles delivered to the lungs should be carefully chosen so that the injected material can be detected in the LDLNs by flow cytometry. We have also successfully used this method for adoptive transfer of cells and labeling of specific lung cell populations using fluorescently labeled antibodies. In addition, this method is routinely used to administer bleomyci...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
Name | Company | Catalog Number | Comments |
70μm Cell stariner | BD Biosciences | ||
Aniline Blue | Fisher Scientific | A967-25 | |
Animal Feeding needle | Popper & Sons, Inc. | 7920 | |
Collagenase | Sigma-Aldrich | C2139 | |
Collagenase TypeIV | Worthington Biochemical | ||
Collagenase D | Roche Group | 11088974103 | |
DPBS | Invitrogen | 14190 | |
Fluoresbrite YG Microspheres (0.5μm) | Polysciences, Inc. | 17152 | |
HBSS without Calcium chloride and magnesium chloride | Invitrogen | 14170 | |
Ketamine HCl (100mg/ml) | Hospira Inc. | ||
Laryngoscope Blade | PennCentury, Inc | For Model LS-1 | Refer to www.penncentury.com |
Lightweight Fiber Optic Laryngoscope | Welch Allyn | 80814 | |
Red Fluorescent Beads (0.5μm) | Invitrogen | F8812 | For i.p injection |
Xylazine (100mg/ml) | Lloyd, Inc. |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone