Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
A live cell fluorescent protein based method for illuminating cellular vacuoles (inclusions) containing Chlamydia is described. This strategy enables rapid, automated determination of Chlamydia infectivity in samples and can be used to quantitatively investigate inclusion growth dynamics.
The obligate intracellular bacterium Chlamydia elicits a great burden on global public health. C. trachomatis is the leading bacterial cause of sexually transmitted infection and also the primary cause of preventable blindness in the world. An essential determinant for successful infection of host cells by Chlamydia is the bacterium's ability to manipulate host cell signaling from within a novel, vacuolar compartment called the inclusion. From within the inclusion, Chlamydia acquire nutrients required for their 2-3 day developmental growth, and they additionally secrete a panel of effector proteins onto the cytosolic face of the vacuole membrane and into the host cytosol. Gaps in our understanding of Chlamydia biology, however, present significant challenges for visualizing and analyzing this intracellular compartment. Recently, a reverse-imaging strategy for visualizing the inclusion using GFP expressing host cells was described. This approach rationally exploits the intrinsic impermeability of the inclusion membrane to large molecules such as GFP. In this work, we describe how GFP- or mCherry-expressing host cells are generated for subsequent visualization of chlamydial inclusions. Furthermore, this method is shown to effectively substitute for costly antibody-based enumeration methods, can be used in tandem with other fluorescent labels, such as GFP-expressing Chlamydia, and can be exploited to derive key quantitative data about inclusion membrane growth from a range of Chlamydia species and strains.
Infectious diseases caused by species of the intracellular bacterium Chlamydia elicit a major burden on global health, including sexually transmitted disease, pelvic inflammatory disease, blindness, pneumonia and possibly atherosclerosis1-4. The ability of Chlamydia to interact with the host cell, from within a vacuole (termed the inclusion), is a critical determinant for their successful infection of cells and the host. The inclusion is a novel pathogenic compartment that enables chlamydial growth and is dynamically modified throughout the entire 2–3 day developmental cycle of Chlamydia5. The obligate intracellular nature of chlamydiae presents numerous challenges to the research community, in particular for directly studying the unique biology of the inclusion. A major handicap has been the inability to efficiently visualize either intracellular Chlamydia or their inclusion by fluorescent approaches in living cells. A recent discovery has finally revealed the means to generate GFP expressing C. trachomatis6; however, this finding has not yet led to specific labeling of the inclusion. Some techniques have been described for labeling of bacteria and inclusions7,8, but they suffer from shortcomings such as non-specificity, transiency and susceptibility to photobleaching. A key discovery by our group established a new strategy for illuminating the inclusion using GFP expressing host cells9. This strategy rationally exploits the intrinsic impermeability of the inclusion membrane to molecules greater than 520 Da10. When cells are engineered to stably express a particular cytosolic fluorescent protein (e.g., GFP or mCherry), Chlamydia inclusions are visible with remarkable clarity by their complete exclusion of fluorescence. This reverse imaging strategy enables immediate visualization of inclusions for all Chlamydia species and it can be easily adapted for most host cells of interest. As a demonstration of its utility, this method was used previously to reveal and define the cellular exit pathways for Chlamydia spp9.
Here, we further demonstrate how this method is performed, and can be exploited to derive key quantitative data about inclusion growth dynamics. Furthermore, it can effectively substitute for costly antibody-based enumeration methods and can be used in tandem with other fluorescent labels, such as mKate2-expressing Chlamydia11. This powerful combination of tools enables exploration of the physical properties of the chlamydial inclusion membrane inside living host cells.
1. Generation of Fluorescent Host Cell Lines
2. Generation of GFP-expressing Chlamydia trachomatis
3. Infecting Cells with Chlamydia
4. Live Cell Visualization of Chlamydia Inclusions
5. Quantitation of Inclusion Growth Parameters in Live Cells
Mammalian cells expressing cytosolic fluorescent proteins (e.g., GFP) can be engineered to enable illumination of Chlamydia inclusions in live, infected cell cultures. Upon infection with Chlamydia, inclusions are readily visible as black spots in the host cells (Figure 1). The clarity of fluorescence-lacking inclusions can be exploited for the automated identification of inclusions across numerous fields of view and/or treatments (Figure 1). Once fluorescent h...
Here we describe the experimental strategy for generating fluorescent host cells for real time visualization and analysis of Chlamydia inclusions. This vacuole visualization approach confers the powerful ability to illuminate, track and quantitatively measure the dynamic properties of chlamydial inclusions across populations of cells or in single cells over time. Chlamydia inclusions in fluorescent protein labeled cells are strikingly well defined, such that they are easily identified without the need f...
The authors declare that they have no competing financial interests.
The authors thank Ian Clarke and P. Scott Hefty for the pGFP-SW2 and pASK-GFP-mKate2-L2 plasmids, respectively. We thank Paul Miller for technical assistance and Richard Stephens for other resources. This work was funded by NIH grant AI095603 (KH).
Name | Company | Catalog Number | Comments |
Lipofectamine 2000 | Invitrogen | 11668 | |
Opti-Mem | Invitrogen | 31985 | |
Polybrene | Sigma | H9268 | |
0.45 µm filters | Fisher | 09-719D | |
G418 | Invitrogen | 10131 | |
HBSS | Invitrogen | 14025 | |
DMEM | Invitrogen | 11995 | |
RPMI 1640 | Invitrogen | 11875 | |
RPMI 1640 w/o phenol red | Cellgro | 17-105-CV | |
Penicillin G | Sigma | 13752 | |
Cycloheximide | Sigma | C7698 | |
Glass bottom dishes | MatTek | P35G-1.5-14-C | |
Chamber slides, Lab-Tek II | Nunc | 154526, 154534 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone