Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This presentation demonstrates a method whereby electroporation of adherent, cultured cells is used for the study of intercellular, junctional communication, while the cells grow on a slide coated with conductive and transparent indium-tin oxide.
In this technique, cells are cultured on a glass slide that is partly coated with indium-tin oxide (ITO), a transparent, electrically conductive material. A variety of molecules, such as peptides or oligonucleotides can be introduced into essentially 100% of the cells in a non-traumatic manner. Here, we describe how it can be used to study intercellular, gap junctional communication. Lucifer yellow penetrates into the cells when an electric pulse, applied to the conductive surface on which they are growing, causes pores to form through the cell membrane. This is electroporation. Cells growing on the nonconductive glass surface immediately adjacent to the electroporated region do not take up Lucifer yellow by electroporation but do acquire the fluorescent dye as it is passed to them via gap junctions that link them to the electroporated cells. The results of the transfer of dye from cell to cell can be observed microscopically under fluorescence illumination. This technique allows for precise quantitation of gap junctional communication. In addition, it can be used for the introduction of peptides or other non-permeant molecules, and the transfer of small electroporated peptides via gap junctions to inhibit the signal in the adjacent, non-electroporated cells is a powerful demonstration of signal inhibition.
The application of electrical current to a cell causes the formation of pores on the cell membrane, by a process termed electroporation. The pores allow the passage of a variety of nonpermeant molecules through the membrane. The electrical field can be controlled precisely, so that the pores formed are very small and reclose rapidly, with minimal disturbance to the cellular physiology. Interestingly, adherent cells can be grown on a glass slide coated with conductive and transparent indium-tin oxide (ITO) and electroporated in situ, that is on the surface where they grow, without being detached to be electroporated in suspension. Cells can grow very well on this surface, and as they are attached and extended, detailed microscopic observation is possible. Using this technique, small nonpermeant molecules can be introduced instantly and into essentially 100% of the cells, which makes this technique especially suitable for studies on the activation of components of a pathway following ligand stimulation of a receptor (reviewed in1).
Electroporation has been used mostly for the introduction of DNA (also called electrotransfection). However, electroporation in situ can be valuable for the introduction of a large variety of molecules, such as peptides2-4, oligonucleotides, such as antisense RNA, double-stranded DNA decoy oligonucleotides to inhibit transcription factor binding, or siRNA3,5,6, radioactive nucleotides7-10, proteins1112 or pro-drugs13. Following electroporation, cells can be lysed for biochemical analyses or fixed and stained with antibodies.
The conductive ITO coating is very thin, 800-1,000Å, so that cell growth is not disturbed by the difference in height of the two surfaces, as the cells grow across the edge of the conductive coating. This offers the advantage that non-electroporated cells can be grown side by side with electroporated ones, to serve as controls. The same approach can be used for the examination of gap junctional, intercellular communication (GJIC), as described in the Video.
Gap junctions are channels connecting the interiors of adjacent cells14. Gap junctional, intercellular communication plays an important role in tumor formation and metastasis, while oncogenes such as Src suppress GJIC15,16. To examine GJIC a fluorescent dye such as Lucifer yellow (LY) is often introduced into cultured cells through microinjection or scrape-loading17 and the diffusion of the dye into neighboring cells is microscopically observed under fluorescence illumination. These techniques however invariably cause cell damage. We now describe a technique where cells are grown on a glass slide which is partly coated with ITO18. An electric pulse was applied in the presence of LY (or other dyes) causing its penetration into the cells growing on the conductive part of the slide, while dye migration to the adjacent, non-electroporated cells was microscopically observed through fluorescence illumination. To avoid disturbing sensitive cells that may tend to detach from the monolayer, an assembly was designed that did not require an electrode to be placed on top of the cells to apply the electrical current19. This approach offers the ability to quantitate GJIC in a large number of cells, without any detectable disturbance to cellular metabolism, as indicated by the absence of an effect on the length of the G1 phase following serum stimulation12, increase in the levels of the fos protooncogene protein (Raptis, unpublished) or two kinases associated with cellular stress, the p38hog or JNK/SAPK kinase1. This approach made possible the examination of the link between levels of oncogene expression, transformation and GJIC18, as well as the effect of Src and Stat3 upon GJIC in a variety of cell types, including cells freshly cultured from lung tumor specimens20-23. In addition, in situ electroporation with the setup described which lacks a top electrode has been successfully employed for the demonstration of gap junction closure upon adipocytic differentiation, although cellular attachment to the substrate is reduced at that stage19,24.
1. Plating the Cells in the Electroporation Chambers
2. Electroporation Procedure
Electroporation for GJIC examination can be conducted outside a laminar-flow hood, since it takes only a few minutes. If longer incubation times are required for a specific experiment, then it can be conducted entirely in a laminar-flow hood. In all cases, the chambers where the cells are grown must be sterile.
3. Microscopic Examination
4. Quantitation of Intercellular Communication
Figure 2 shows rat liver epithelial T51B cells22, electroporated with LY and photographed under fluorescence (panel A and B), or phase-contrast (C) illumination, following fixation and washing. In panel A, the edge of the electroporated area is marked in red. The gradient of fluorescence to the right of the red line denotes transfer through gap junctions. In Figure 3A and 3B, the quantitation of gap junctional communication is shown: The cells at the edge of t...
Critical steps in the protocol
Electroporated material
The purity of the material to be electroporated is very important. If the cells are very flat, then higher concentrations of the tracking dye must be used (up to 20 mg/ml for LY) and in such cases, purity is even more important than in cells with a more spherical shape1. Besides LY a large variety of other dyes or nonpermeant molecules have been employed, such as a series of Alexa dyes to use as probes for c...
The corresponding author is the inventor in a patent held by Queen’s University, which has been licensed to Cell Projects Inc. The company or the University had no influence upon the contents of the paper.
We thank Lowell Cochran for expert videography assistance. The financial assistance of the Canadian Institutes of Health Research (CIHR), the Canadian Breast Cancer Foundation (CBCF, Ontario Chapter), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Breast Cancer Research Alliance, the Ontario Centers of Excellence, the Breast Cancer Action Kingston and the Clare Nelson bequest fund through grants to LR is gratefully acknowledged. SG was the recipient of an NSERC studentship. MG was supported by a postdoctoral fellowship from the US Army Breast Cancer Program, the Ministry of Research and Innovation of the Province of Ontario and the Advisory Research Committee of Queen’s University.
Name | Company | Catalog Number | Comments |
DMEM | Cellgro http://www.cellgro.com/ | 50-013-PB | |
DMEM without Calcium | Hyclone (Thermo scientific: http://www.thermoscientific.com) | SH30319-01 | |
Donor Calf Serum | PAA: http://www.paa.com/ | Cat.# B15-008 | |
Fetal Bovine Serum | PAA: http://www.paa.com/ | Cat.# A15-751 | |
Electroporation apparatus | Cell Projects Ltd UK: http://www.cellprojects.com/ | ACE-100 | |
Chambers | Cell Projects Ltd UK | ACE-04-CC | 4-wells |
Chambers | Cell Projects Ltd UK | ACE-08-CC | 8-wells |
Lucifer Yellow | Cell Projects Ltd UK | ACE-25-LY | High purity |
CelTak | BD Biosciences | 354240 | Cell and tissue adhesive |
Fibronectin | Sigma Aldrich | F1141 | |
Collagen | BD Biosciences | 354236 | |
Poly-Lysine | Sigma Aldrich | P8920 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone