Method Article
This article describes a range of set-ups for seeding human mesenchymal stem cells onto materials, in this case electrospun yarns, that do not cover the base of standard culture well plates in order to maximize and quantify the number of cells that initially attach compared to the known seeding density.
Research into biomaterials and tissue engineering often includes cell-based in vitro investigations, which require initial knowledge of the starting cell number. While researchers commonly reference their seeding density this does not necessarily indicate the actual number of cells that have adhered to the material in question. This is particularly the case for materials, or scaffolds, that do not cover the base of standard cell culture well plates. This study investigates the initial attachment of human mesenchymal stem cells seeded at a known number onto electrospun poly(ε-caprolactone) yarn after 4 hr in culture. Electrospun yarns were held within several different set-ups, including bioreactor vessels rotating at 9 rpm, cell culture inserts positioned in low binding well plates and polytetrafluoroethylene (PTFE) troughs placed within petri dishes. The latter two were subjected to either static conditions or positioned on a shaker plate (30 rpm). After 4 hr incubation at 37 oC, 5% CO2, the location of seeded cells was determined by cell DNA assay. Scaffolds were removed from their containers and placed in lysis buffer. The media fraction was similarly removed and centrifuged – the supernatant discarded and pellet broken up with lysis buffer. Lysis buffer was added to each receptacle, or well, and scraped to free any cells that may be present. The cell DNA assay determined the percentage of cells present within the scaffold, media and well fractions. Cell attachment was low for all experimental set-ups, with greatest attachment (30%) for yarns held within cell culture inserts and subjected to shaking motion. This study raises awareness to the actual number of cells attaching to scaffolds irrespective of the stated cell seeding density.
Scaffolds are routinely being developed and researched for biomaterial and tissue-engineering applications. As such, they are commonly seeded with cells and their in vitro behavior characterized via assays that determine cell proliferation and cell number, for example. For experiments such as these, it is imperative that the initial cell number is known and researchers often state the seeding concentration in terms of number of cells per ml or cm2. While this is good practice, especially for scale-up purposes, it does not account for the actual number of cells that adhere to the scaffold surface (which is also dependent on the adhesive properties of the biomaterial surface1). This is especially true for scaffolds that do not cover the entire base of the cell culture well plate as cells could fall away from the construct and, due to the often static nature of the experiment, may never come back into contact with the material of interest. Electrospun fiber yarns are a good example of a scaffold that does not cover the base of the well (Figure 1A). In this case, low binding well plates that have not been surface-treated should be used to prevent cells from attaching to the plate’s surface and hence distorting the results of any well-based assay.
Well plates are readily used for cell seeding onto scaffolds, but they are not the only method available. Rotary cell culture systems, a type of bioreactor developed by the Life Sciences Division at NASA in the late 1980’s, can similarly be used to seed scaffolds within a three-dimensional (3D) environment with simulated microgravity. This type of bioreactor remains a popular choice with researchers worldwide and has been incorporated in studies for cell signalling2,3, stem cells4,5 and tissue engineering6,7. What makes the rotary bioreactor preferable to well plates is the maintenance of a 3D environment, which helps to prevent differentiated cells from dedifferentiating, as is often the case when cultured within conventional 2D conditions8.
This paper investigates different techniques for seeding human mesenchymal stem cells on electrospun poly(ε-caprolactone) fiber yarns as fabricated in Bosworth et al.,9 in order to maximize the initial number of cells attaching to these scaffolds within a 4 hr period. For 2D culture, yarns were securely held within well plates or custom-made poly(tetrafluoroethylene) (PTFE) troughs and kept under static conditions, or shaken at 30 rpm. For 3D culture, yarns and cells were held within bioreactor vessels rotating at 9 rpm.
1.Scaffold Fabrication and Sterilization
2 . Determining Scaffold Surface Area and Number of Cells
3. Scaffold Set-up – Cell Culture Inserts (Figure 1A)
4. Scaffold Set-up – Trough (Figure 1B)
5. Scaffold Set-up – Bioreactor Vessel (Figure 1C)
6. Cell Counting
7. Cell Seeding
8. Experimental Start
9. DNA Assay
10. Scanning Electron Microscope (SEM) Fixation
The results highlight the location of cells following 4 hr post-seeding for each experimental set-up investigated. Figure 2A demonstrates the percentage of cells that have attached to the scaffold surface during this time. A conversion factor of 8.5 pg/cell was used to convert the measured DNA content into cell number and thus determine the percentage of cells10. For all seeding set-ups investigated, the percentage of cell attachment is relatively low, with greatest cell adherence (30%) for scaffolds held within cell culture inserts and shaken at 30 rpm (Insert Shaker). Lowest adherence (15%) was for scaffolds held within the cell culture inserts and kept under static conditions (Insert Static).
A large number of cells were present within the media fraction (Figure 2B), most notably for cell culture inserts held within low binding plates (Insert Static) and rotary vessels being 50% and 51% respectively. Scaffolds held within the troughs demonstrated a raised number of cells present within the holder itself – 48% of cells for Trough Shaker and 50% for Trough Static.
Scanning electron microscopy allowed a visual assessment of the cell-seeded scaffolds (Figure 3). Representative images highlighted a limited presence of cells on the fibrous surface, irrespective of seeding set-up. However, a greater number of cells and cell agglomerates were present on the scaffolds held within the cell culture inserts and shaken at 30 rpm (Insert Shaker).
Figure 1. Experimental Set-ups, where Electrospun Yarn is Held within; (A) cell culture inserts and low binding well plate; (B) poly(tetrafluoroethylene) (PTFE) trough and petri dish; and (C) bioreactor vessel. Please click here to view a larger version of this figure.
Figure 2. Location of Cells 4 hr Post-seeding onto PCL Electrospun Yarns using Different Seeding Set-ups. (A) Demonstrates the percentage of cells that have attached to the PCL scaffold (mean ± standard deviation); (B) highlights the percentage spread of cell location within the three fractions – media, well and scaffold (n = 4, data presented as mean values). Please click here to view a larger version of this figure.
Figure 3. Representative Scanning Electron Micrographs for PCL Electrospun Yarns with Human Mesenchymal Stem Cells, 4 hr after Initial Seeding using Different Experimental Set-ups. (All images at 1,000X magnification, scale bar = 130 µm.) Please click here to view a larger version of this figure.
Electrospun fiber matrices fabricated from biopolymers are regularly used to support cell attachment and proliferation for biomaterial and/or tissue engineering applications11,12. In these cases, the matrices are often thin sheets of fibers that easily cover the entire base of a cell culture well plate and thus are in complete contact with seeded cells which improves cell attachment. However, if the biomaterial scaffold does not fully cover the base of the well plate, there is a high chance that a large proportion of the seeded cells will not stay in contact with the scaffold and ultimately will not be able to attach. This study investigated several different methods for seeding cells onto scaffolds that do not cover the base of the well plate, in order to determine an optimized technique that could be recommended for future cell-based experiments.
Five different set-ups were investigated (Figure 1): scaffolds (electrospun yarn) held using cell culture inserts within low binding well plates and either kept under static conditions or shaken at 30 rpm; scaffolds placed within narrow PTFE troughs and held static or shaken at 30 rpm; and scaffolds housed inside bioreactor vessels rotating at 9 rpm. Determining the number of cells that had adhered to the electrospun yarns by DNA assay demonstrated a low percentage of attachment for all seeding set-ups (Figure 2); and this was further confirmed from scanning electron micrographs (SEM) (Figure 3). Greatest cell attachment – 30% or ~18,060 cells -was observed for yarns that were held within cell culture inserts and subjected to continuous motion. Interestingly, lowest cell attachment (15%) was achieved for yarns held by cell culture inserts but kept under static conditions, which would suggest that the inclusion of radial motion has a positive effect on keeping cells in contact with the scaffold. However, it should be noted that continuous circling of the media’s flow might be responsible for the cell agglomerates observed from the SEM images. The shaker plate was set on its lowest setting – 30 rpm – which could be a limitation to this set-up. Using a slower radial motion may help to prevent or reduce cell agglomeration and could also improve cell attachment as cells will experience less force. Future experiments should focus on optimising the ideal shaker speed for improved cell attachment. Incorporating motion for yarns held within the troughs did not result in a similar trend, with both scenarios yielding 18% attachment (~10,836 cells); though this may be due to the partial floatation of the scaffolds within the troughs (observed for troughs placed on the shaker plate) as they were not anchored to the base. Partial floating of the scaffold will prevent any cells that have sunk to the bottom of the trough from coming into contact with the material and adhering. For this particular set-up, the trough was housed within a petri dish and a total 10 ml volume of media added. The small dimensions of the trough means that the majority of the media is present within the petri dish and if there is any movement, cells may drift away from the trough into the petri dish and remain completely out of reach of the scaffold. To overcome these limitations, further experiments should include an extra step in the protocol, whereby the ends of the scaffolds are pinned to the base of the troughs using sterile fine-needles, as this should prevent their floatation and movement (particularly for scaffolds exposed to radial motion), which ultimately should lead to an increased number of cells attaching to the scaffold. 16% of cells had attached to the yarns present within the rotary vessels. Despite being a well-established technique for 3D culture, problems did arise with the removal of scaffolds from the vessels’ main port, which may have resulted in loosely attached cells being lost. Vessels that can be fully opened would eliminate this problem; these are available to purchase, but are considerably more expensive than the disposable vessels used in this study.
This study demonstrates the current issues with seeding scaffolds that do not cover the entire base of standard cell culture well plates. Seeding a known cell number resulted in less than a third attaching to the scaffold, despite the scaffold’s surface area allowing for all cells to adhere. This could have detrimental consequences in other cell-based assays that may assess the biocompatibility and cell-material / cell-cell behaviour and interactions with the scaffold as a potential future medical device. Further limitations of the study may include the 4 hr time-point – despite being long enough to ensure initial cell seeding (cells have been shown to firmly attach to substrates within thirty minutes13,14,15), it may be reasonable to investigate later time-points providing cells do not proliferate during a longer time-frame as this would otherwise skew the starting cell number. Reducing the volume of media, in this case 10 ml, could also improve contact between the cells and scaffold and ultimately increase cell attachment. Future studies should also consider cell viability as the process of cell seeding can cause cell damage and/or cell death16. Cell DNA assays do not differentiate between viable and non-viable cells, as such a live/dead assay, for example, would highlight the level of viability.
This investigation raises awareness to the actual number of cells that attach to the scaffold despite seeding a known quantity. For studies that rely on the starting number of cells, it is highly important that researchers know exactly how many of that figure do in fact adhere to the substrate of interest.
The authors declare that they have no competing financial interests.
The authors would like to thank and acknowledge the Medical Research Council for funding this research - MRC-DPFS grant code G1000788-98812.
Name | Company | Catalog Number | Comments |
Distilled water | in-house supply | n/a | |
Ethanol | Merck | 1117271000 | |
Phosphate Buffered Saline solution | Life Technologies | 70013016 | |
Human mesenchymal stem cells | PromoCell GmbH | C-12974 | |
MSC culture media | PromoCell GmbH | C-28010B | Warmed to 37 oC before use |
Supplement mix | PromoCell GmbH | C-39810 | Add to culture media |
Antibiotic/antimyotic mix | Sigma-Aldrich | A5955 | Add to culture media |
Trypsin (0.05%) EDTA (0.02%) | Sigma-Aldrich | 59417C | Warmed to 37 °C before use |
Cell culture flasks (T75) | Becton Dickinson Ltd | 353110 | |
Low binding 6-well plates | Costar Corning | 3471 | |
6-well CellCrowns | Scaffdex | C00003S | |
Petri-dish 50 ml deep | Sterilin | 124 | |
PTFE troughs | in-house production | n/a | |
Disposable RCCS vessels 10 ml | Synthecon | D-410 | |
4 Vessel Rotary Cell Culture System bioreactor | Synthecon | RCCS-4DQ | |
Shaker plate | Stuart | SSM1 | Mini Orbital Shaker |
Haemocytometer | Digital Bio | DHC-F01 | Disposable C-Chip |
Centrifuge tube | Deltalab | 352096, 429901 | 15 ml and 50 ml |
Centrifuge | Hettich | Rotafix 32 A | |
Syringe 3 ml | Shield Medicare Ltd | 3039820 | |
Pipettes | Sterilin | 40305, 47310, 40125 | 5, 10 and 25 ml |
Gilson pipettes | SLS | F144801, F144802, F123600, F123601, F123602 | P2 - P1000 |
Pipette tips | SLS | PIP7852, PIP7834, PIP7840 | |
Micro test tube 1.5 ml | Eppendorf | 30125.15 | |
Triton X-100 | Sigma | 9002-93-1 | |
PicoGreen Assay | Invitrogen | P7589 | Assay set-up in the dark |
Black 96-well plate | Greiner Bio One | 655086 | |
Fluorescent plate-reader | BGM Labtech | FLUOstar Optima | |
Glutaraldehyde 25% | TAAB Laboratories | G002 | Made to a concentration of 1.5% v/v in PBS |
Hexamethyldisilazane (HMDS) | Sigma | 999-97-3 | |
Aluminium stubs (SEM) | Agar Scientific | G301 | |
Carbon tabs (SEM) | Agar Scientific | G3347N | |
Gold sputter coater | Edwards | S150B | |
Scanning Electron Microscope (SEM) | Phenom World | Phenom Pro |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone