Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Chemokine signaling elicits marked alterations of cellular morphology and some important redistributions of intracellular proteins. Here, a rapid and detailed protocol is provided to study these events.
Cells respond to chemokine stimulation by losing their round shape in a process called polarization, and by altering the subcellular localization of many proteins. Classic imaging techniques have been used to study these phenomena. However, they required the manual acquisition of many cells followed by time consuming quantification of the morphology and the co-localization of the staining of tens of cells. Here, a rapid and powerful method is described to study these phenomena on samples consisting of several thousands of cells using an imaging flow cytometry technology that combines the advantages of a microscope with those of a cytometer. Using T lymphocytes stimulated with CCL19 and staining for MHC Class I molecules and filamentous actin, a gating strategy is presented to measure simultaneously the degree of shape alterations and the extent of co-localization of markers that are affected by CCL19 signaling. Moreover, this gating strategy allowed us to observe the segregation of filamentous actin (at the front) and phosphorylated Ezrin-Radixin-Moesin (phospho-ERM) proteins (at the rear) in polarized T cells after CXCL12 stimulation. This technique was also useful to observe the blocking effect on polarization of two different elements: inhibition of actin polymerization by a pharmacological inhibitor and expression of mutants of the Par6/atypical PKC signaling pathway. Thus, evidence is shown that this technique is useful to analyze both morphological alterations and protein redistributions.
Chemokines are small soluble proteins that attract cells to specialized locations1. Therefore, they participate in the correct positioning of cells in tissues, a crucial function in development and physiology. The immune system is no exception to this rule as it relies on the action of many different cell types which act in concert to mount an effective immune response. By controlling the specific location of one immune cell type in a given state, chemokines are pre-required before foreign antigens can be detected and neutralized.
In T lymphocytes in particular, chemokines bind to specific surface receptors which, upon engagement, elicit many intracellular signals (calcium rise, ERK phosphorylation, Rho GTPases activation, increase in integrins affinity and cytoskeletal alterations) that favor T cell motility2,3. At the cellular level, one can observe morphological alterations elicited upon chemokine stimulation. These changes in cell shapes are especially dramatic in T cells: resting T cells have a bead-like round morphology when travelling in the blood stream. However, the sensing of the presence of chemokines in inflammatory sites or at proximity of lymphoid organs is going to change the shape of T cells which now adopt a typical “hand-mirror” morphology consisting of a bipolar form: a leading edge at the front and a trailing edge, or uropod, at the back4. In addition, intracellular components can segregate into these two opposite regions of a polarized T cell to sustain migration. For example, actin filaments polymerization increases upon chemokine stimulation5 and polymerized actin accumulates at the front of a polarized T cell2. On the other hand, several proteins, such as phosphorylated proteins of the Ezrin-Radixin-Moesin (ERM) family which link the plasma membrane to the cortical F-actin cytoskeleton, re-localize at the uropod of polarized T cells6. Interestingly, we and others have shown that this polarization process is required for T cell migration. Indeed, any treatment that interferes with polarization will inhibit cellular motility. For instance, inhibition of the activity of the members of the atypical protein kinases C (PKC) family, PKCζ and PKCι blocks T cell polarization and their migratory scanning process of dendritic cells7. T cell polarization is also regulated by Rho GTPases. We have shown that the modulation of RhoA activity by the recently described Fam65b protein interferes with T cell changes in morphology and their capacity to migrate in a Transwell assay6. As polarization is a prerequisite step for cellular motility, it is thus crucial to be able to quantify it as a main readout of chemokine responses. Cell shape alterations were previously measured manually8. However, this kind of quantification is very time-consuming, so that usually only a few tens of cells are taken into account.
Here, a new method is presented to rapidly quantify the degree of shape alterations of T lymphocytes exposed to chemokine stimulation. An imaging flow cytometry technology (see Table of Specific Reagents/Equipment) is used, which combines the advantages of a flow cytometer and a microscope9 to quantify efficiently the amount of polarized cells in different conditions of chemokine stimulation. In addition to the quantification of the morphological alterations that one can measure robustly with this technology, it is also possible to evaluate changes in the subcellular localization of some proteins upon chemokine signaling.
1. Preparation of T Lymphocytes
2. Chemokine Stimulation
3. Stainings
4. Images Acquisition and Analysis
The first example chosen here concerns the use of human primary T lymphocytes stimulated with CCL19. However, the same strategy can be used with primary mouse T cells, T cell lines or any other cell type responsive to chemokine stimulation. The gating strategy presented here includes a series of windows that select the focused events, then the single cells. Finally the range of fluorescence intensity is followed here as an example on two markers: the MHC Class I HLA-ABC and filamentous actin for resting (Figure 1...
Using a recent technology of imaging flow cytometry, a rapid and informative gating strategy to analyze cellular and molecular events induced by chemokine stimulation is presented. From a single experiment, one can obtain two main types of information: the changes in cell morphology induced by chemokine stimulation and the subcellular distribution of different proteins during the polarization process. Interestingly, evidence is also provided for the possibility to analyze a large number of cells, which allows statistical...
The authors declare that they have no competing financial interests.
The authors greatly acknowledge Pierre Bourdoncle, Thomas Guilbert and Louise Rimbault of the Cochin Imaging Facility. This work was supported by Inserm, CNRS and Ligue Nationale contre le Cancer (Equipe labellisée).
Name | Company | Catalog Number | Comments |
RPMI | Gibco | 61870-010 | |
Human serum AB | PAA | C11-021 | Pre-heat to inactivate the complement. |
Fetal calf serum | PAN Biotech | P30-3300 | Pre-heat to inactivate the complement. |
Human T cell nucleofactor kit | Lonza | VCA-1002 | |
Murine IL7 | Peprotech | 217-17 | |
HBSS | Gibco | 14025-050 | Warm in 37 °C water bath before use. |
Hepes | Gibco | 15630-056 | |
Murine CCL19 | Peprotech | 250-27B | Aliquots are thawed on ice before adding the chemokine to the cells. |
Human CCL19 | Peprotech | 300-29B | Aliquots are thawed on ice before adding the chemokine to the cells. |
Human CXCL12 | Peprotech | 300-28A | Aliquots are thawed on ice before adding the chemokine to the cells. This chemokine can also be used on mouse T cells. |
PFA | Electron Microscopy Sciences | 157-8-100 | This is a 8% PFA solution in water. Mix volume to volume with 2x PBS to obtain a 4% PFA solution in PBS. |
BSA | Sigma | A3059 | |
Saponin | Fluka | 84510 | |
Alexa Fluor 594 phalloidin | Invitrogen | A12381 | |
FITC-anti-HLA-ABC antibody | Beckman Coulter | IM1838 | clone B9.12.1 |
Anti-P-ERM antibody | Cell Signaling Technology | 3149P | |
ImageStreamx Mark II | Amnis |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone