Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Naïve CD4+ T cells polarize to various subsets depending on the environment at the time of activation. The differentiation of naïve CD4+ T cells to various effector subsets can be achieved in vitro through the addition of T cell receptor stimuli and specific cytokine signals.
Antigen inexperienced (naïve) CD4+ T cells undergo expansion and differentiation to effector subsets at the time of T cell receptor (TCR) recognition of cognate antigen presented on MHC class II. The cytokine signals present in the environment at the time of TCR activation are a major factor in determining the effector fate of a naïve CD4+ T cell. Although the cytokine environment during naïve T cell activation may be complex and involve both redundant and opposing signals in vivo, the addition of various cytokine combinations during naive CD4+ T cell activation in vitro can readily promote the establishment of effector T helper lineages with hallmark cytokine and transcription factor expression. Such differentiation experiments are commonly used as a first step for the evaluation of targets believed to promote or inhibit the development of certain CD4+ T helper subsets. The addition of mediators, such as signaling agonists, antagonists, or other cytokines, during the differentiation process can also be used to study the influence of a particular target on T cell differentiation. Here, we describe a basic protocol for the isolation of naïve T cells from mouse and the subsequent steps necessary for polarizing naïve cells to various T helper effector lineages in vitro.
The concept of distinct lineages or subsets of CD4+ T helper (Th) cells has been around since the latter part of the 20th century1. Recognition of cognate antigen in the presence of costimulatory signals results in several rounds of cellular proliferation and the eventual differentiation into effector Th cells. The type of Th cell generated during this process is dependent on the cytokine environment present during activation2. Initially, naïve Th cells were thought to polarize into 2 distinct lineages following T cell receptor (TCR) activation, costimulatory CD28 ligation, and cytokine signaling. Type 1 helper cells (Th1) are characterized by their effector production of the IFNγ cytokine as well as their requirement for IL-12 signaling during the differentiation process3,4. Eventually it was discovered that differentiated Th1 cells have a genetic profile that is most distinctively characterized by the expression of the T box family transcription factor, Tbx21 (T-bet), which is considered the master regulator of the Th1 genetic program5. Furthermore, IL-12 as well as IFNγ can promote T-bet expression6,7. In the immune response, Th1 cells are important for the host defense against intracellular pathogens as well as strong promoters of autoimmune inflammation. In contrast, type 2 helper cells (Th2) require IL-4 for their development and their effector cytokines, including IL-4, IL-5, and IL-13, are important for driving B cell responses and are pathogenic in allergy8,9. Similar to Th1 cells, Th2 cells were found to express their own master transcriptional regulator, termed GATA-310,11. Interestingly, the presence of polarizing cytokines and the generation of a specific Th lineage are antagonistic to the development of others2,12, suggesting that only a particular Th subset may become dominant during an immune response.
Since the identification of the Th1 and Th2 lineages, further work has demonstrated even more unique subsets of T helper cells, including follicular helper (TFH), IL-9-producing (Th9), and IL-22-producing (Th22)(recently reviewed in13). For the purposes of in vitro differentiation experiments, this protocol will focus only on two additional Th subsets, termed regulatory T cells (Treg) and IL-17-producing CD4+ T cells (Th17). CD25+ regulatory T cells can occur naturally (nTreg) in the thymus; naïve Th cells may also be induced (iTreg) to become regulatory in the periphery (reviewed in14,15). Both types of Tregs express a characteristic transcription factor, termed forkhead box P3 (Foxp3), which is critical for their effector suppression mechanisms that include soluble anti-inflammatory mediator production, IL-2 consumption, and cell contact-dependent mechanisms14,15. The lack of Foxp3 expression results in a severe, multi-organ autoimmune disorder termed immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), demonstrating the critical role of this Th subset in resolving inflammation and regulating peripheral tolerance to self antigens16. In vitro, naïve CD4+ T helper cells up-regulate Foxp3 and become committed to the Treg program upon stimulation with IL-2 and TGF-β14,15. There may be moderate to considerable plasticity in CD4+ T cell lineages, especially when considering only cytokine production (reviewed in 17,18). However, for the purposes of in vitro differentiation protocols, we will be discussing each subset as a unique lineage.
Recently, a subset of Th17 cells that produces the IL-17 cytokine was identified as a unique lineage with pro-inflammatory functions that are particularly pathogenic during autoimmune inflammation19-21. Th17 cells express a unique transcription factor, termed retinoid-related orphan receptor gamma t (RORγt) that coordinates the Th17 genetic program22. TGFβ is important for the generation of Th17 lineage through the induction of RORγt. However, the effect of TGFβ signaling is believed to only induce Th17 commitment upon synergizing with IL-6 (reviewed in12). Further studies have shown that a variety of other signals that can positively regulate Th17 commitment, including IL-1β, increased sodium, and TLR signaling23-26. Other reports have suggested that the pathogenic Th17 cells in vivo are the ones that actually bypass TGFβ signaling and instead rely on a combination of IL-1, IL-6, and IL-23 for their differentiation27. Thus, Th17 cells may be derived from a variety of signaling pathways; for the purposes of this protocol, the commonly-used (TGFβ and IL-6) pathway for Th17 lineage commitment will be presented.
The differentiation protocols described below for all effector lineages relies on fixed antibody as stimuli for the TCR and CD28 throughout the entire course of the experiment. However, others have demonstrated that TCR activation with antigen-presenting cells28 or cross-linking anti-CD3 and anti-CD28 antibodies with hamster antibody for 2 days29 are also highly effective means of inducing the generation of various Th subsets. The protocol presented here builds on previously reported methods for isolating murine CD4+ T cells from secondary lymphoid organs30 and generating Th17 cells31. One major difference is that this protocol relies on the use of a cell sorter to isolate naïve CD4+ T cells from lymphoid tissues. However, many companies now offer rapid separation kits that can enrich for naïve CD4+ T cells, which may be able to bypass the requirement for sorting depending on the experiment. The methods and reagents presented in this protocol are what we routinely use and find to be the most effective. However, keep in mind that alternative reagents and methodologies exist for many of the steps presented below and it is up to the individual lab to determine what will work best for their purposes.
All experimental procedures are performed using protocols approved by the office of Environmental Health and Safety at the Rosalind Franklin University of Medicine and Science. C57BL/6 mice (purchased from NCI) used for this protocol were housed under specific pathogen-free conditions, and all animal experiments were performed using protocols approved by the Institutional Animal Care and Use Committee (IACUC) at the Rosalind Franklin University of Medicine and Science.
1. Preparation of Instruments, Supplies, and Reagents
2. Isolation of Lymph Nodes and Spleen from Mice
3. Tissue Processing and CD4+ Enrichment
4. Sorting Naïve CD4+ T cells
5. Setting Up the In vitro Differentiation
6. Analysis of Differentiation
The time point for the analysis of differentiation can vary depending on the Th condition being tested as well as the strength of T cell receptor activation. After 2-3 days of differentiation, cells can be visualized by light microscopy to determine the extent of T cell proliferation. Wells exhibiting extensive proliferation and clumping of cells will most likely be ready for analysis at day 4. Differentiation conditions relying on the addition of exogenous IL-2, such as Th1 and Th2, will likely exhaust the media after 4...
While the spleen contains naïve Th cells, the proportion of this population in lymph nodes is much higher. Failure to properly identify and remove lymph nodes in this protocol will result in a poor yield of naïve cells. This can be especially difficult in older mice or male mice that have more fat tissue. As shown in Figure 1, proper fixing and pinning of the animal limbs and skin will allow for easier visualization of the accessible exterior lymph nodes. Once lymph nodes and spleens are proces...
The authors declare no competing financial interests.
The authors would like to thank all members of the Reynolds lab at Rosalind Franklin University of Medicine and Science, and the Chen Dong lab at the University of Texas MD Anderson Cancer Center for optimization of this protocol. This work was supported by a grant to J.M.R. from the National Institutes of Health (K22AI104941).
Name | Company | Catalog Number | Comments |
Complete RPMI: | Warm in a 37 oC water bath before use | ||
RPMI 1640 Media | Life Technologies | 11875119 | |
10 % FBS | Life Technologies | 26140-079 | |
1000X 2-mercaptoethanol | Life Technologies | 21985023 | |
100X Pen/Strep | Life Technologies | 15140122 | |
100X L-glutamine | Life Technologies | 25030081 | |
120 micron nylon mesh | Amazon | CMN-0120-10YD | Cut into 2 cm2 squares and autoclave |
Alternative: 100 micron cell strainers | Fisher | 08-771-19 | Alternative to cutting nylon mesh |
autoMACS running buffer | Miltenyi | 130-091-221 | Warm in a 37 oC water bath before use |
autoMACS rinsing solution | Miltenyi | 130-091-222 | Warm in a 37 oC water bath before use |
CD4 beads | Miltenyi | 130-049-201 | |
ACK lysis buffer | Life Technologies | A10492-01 | |
Cytokines: | |||
Human (h) IL-2 | Peprotech | 200-02 | |
Recombinant mouse (rm) IL-4 | Peprotech | 214-14 | |
rmIL-6 | R & D Systems | 406-ML-025 | |
rmIL-12 | Peprotech | 210-12 | |
hTGFb | R & D Systems | 240-B-010 | |
Antibodies: | |||
2C11 (anti-CD3) | BioXcell | BE0001-1 | |
37.51 (anti-CD28) | BioXcell | BE0015-1 | |
11B11 (anti-IL-4) | BioXcell | BE0045 | |
XMG1.2 (anti-IFNg) | BioXcell | BE0055 | |
anti-CD62L-FITC | BioLegend | 104406 | Use at 1:100 |
anti-CD25-PE | BioLegend | 102008 | Use at 1:400 |
anti-CD4-PerCP | BioLegend | 100434 | Use at 1:1000 |
anti-CD44-APC | BioLegend | 103012 | Use at 1:500 |
Phorbol 12-myristate 13 acetate (PMA) | Sigma-Aldrich | P-8139 | Prepare a stock at 0.1 mg/ml in DMSO and freeze aliquots at -20 oC |
Ionomycin | Sigma-Aldrich | I-0634 | Prepare a stock at 0.5 mg/ml in DMSO and freeze aliquots at -20 oC |
Brefeldin A | eBioscience | 00-4506-51 | Use at 1:1000 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone