Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
The goal of this protocol is to manufacture pathogen-specific clinical-grade T cells using a bench-top, automated, second generation cell enrichment device that incorporates a closed cytokine capture system and does not require dedicated staff or use of a GMP facility. The cytomegalovirus pp65-specific-T cells generated can be directly administered to patients.
The adoptive transfer of pathogen-specific T cells can be used to prevent and treat opportunistic infections such as cytomegalovirus (CMV) infection occurring after allogeneic hematopoietic stem-cell transplantation. Viral-specific T cells from allogeneic donors, including third party donors, can be propagated ex vivo in compliance with current good manufacturing practice (cGMP), employing repeated rounds of antigen-driven stimulation to selectively propagate desired T cells. The identification and isolation of antigen-specific T cells can also be undertaken based upon the cytokine capture system of T cells that have been activated to secrete gamma-interferon (IFN-γ). However, widespread human application of the cytokine capture system (CCS) to help restore immunity has been limited as the production process is time-consuming and requires a skilled operator. The development of a second-generation cell enrichment device such as CliniMACS Prodigy now enables investigators to generate viral-specific T cells using an automated, less labor-intensive system. This device separates magnetically labeled cells from unlabeled cells using magnetic activated cell sorting technology to generate clinical-grade products, is engineered as a closed system and can be accessed and operated on the benchtop. We demonstrate the operation of this new automated cell enrichment device to manufacture CMV pp65-specific T cells obtained from a steady-state apheresis product obtained from a CMV seropositive donor. These isolated T cells can then be directly infused into a patient under institutional and federal regulatory supervision. All the bio-processing steps including removal of red blood cells, stimulation of T cells, separation of antigen-specific T cells, purification, and washing are fully automated. Devices such as this raise the possibility that T cells for human application can be manufactured outside of dedicated good manufacturing practice (GMP) facilities and instead be produced in blood banking facilities where staff can supervise automated protocols to produce multiple products.
Hematopoietic stem-cell transplantation (HSCT) 1 can be combined with adoptive T-cell therapy to improve graft-versus-tumor effect and to provide immunity to opportunistic infections2. Generation of antigen-specific donor-derived T cells for infusion has historically required skilled personnel and use of specialized facilities that are GMP-compliant. The delivery of such T cells has resulted in resolution of opportunistic infections3 as well as treating the underlying malignancy4. Recently, investigators have demonstrated that the adoptive transfer of only few thousand virus-specific T cells (~ 1 x 104 – 2.5 x 105 cells/kg recipient body weight) can successfully treat opportunistic CMV infections after allogeneic HSCT5-9. A limited number of GMP facilities with associated skilled manufacturing requirements and the high cost associated with cell production has, however, restricted patient access to promising T-cell therapies10. One approach to isolating antigen-specific T cells is based on the CCS using a bi-specific reagent to recognize CD45 and IFN-γ. As is shown, this methodology can be used to generate clinical-grade CMV-specific T cells employing an automated cell enrichment CCS device (Figure 1B).
CMV-specific T cells are generated by incubating overlapping peptides from CMV pp65 antigen with leukapheresis total nuclear cells (TNC) from CMV-seropositive donors. These peptides, displayed in the context of human leukocyte antigen (HLA), activate the CMV pp65-specific T cells within the TNC to secrete IFN-γ. These T cells can then be “captured” and magnetically separated. The operation of the first-generation cell enrichment device (Figure 1A) required personnel skilled in cell culture under GMP conditions, and coordination of staff to undertake the multiple steps necessary to generate a “captured” product.
The procedure typically required 10 to 12 hr of continuous operation, and therefore personnel likely need to work over two shifts in the GMP facility. These constraints are now obviated by the implementation of a second-generation device (shown in Figure 1B). This device undertakes magnetic enrichment, similar to the first generation device, but automates other aspects of the CCS in an unbreached approach. This significantly reduces the burden on the GMP team as most of the steps can be accomplished unattended by staff. Furthermore, since the device operates as a closed system, the antigen-specific T cells can be captured and processed on the benchtop except the steps involved in leukapheresis isolation and preparation of materials before starting the instrument. Details of the complete instrumentation and functionality of this second-generation cell enrichment device have been published11.
Here, we describe the steps to enrich CMV pp65-specific T cells from a steady-state apheresis product using the automated cell enrichment CCS system. Once isolated, these CMV-specific T cells may be immediately infused into a patient.
1. Preparation of Materials under Sterile Conditions (See Materials and Equipment Table)
2. Preparation and Use of Automated Cell Enrichment System (See Materials and Equipment Table)
3. Cell Count Determination
4. Examination of the Separation Performance
NOTE: The first 6 indicated regions of the hierarchy links are the same as Figure 3, (1-6) and last 2 regions are shown in Figure 4 (6-8a).
In this study, an automated cell enrichment CCS System was used for automated production of CMV pp65-specific T cells. CMV-specific T cells were enriched from three apheresis cell products. The steady-state apheresis product was harvested over 2 hr from a CMV-seropositive donor and generated 1010 total nuclear cells (TNC). 109 TNC were then activated with CMV pp65-derived peptides (60 nmol) for 4 hr and the IFN-γ secreting T cells were isolated using the CCS on the automated cell enrichment dev...
Adoptive T-cell therapy has emerged as a viable option to treat B-cell malignancies4. Its therapeutic potential is dependent on infusing the desired number of target antigen specific T cells that lack replicative senescence2. This can be achieved by sorting out a pure population of antigen specific T cells from expanded T cells in compliance with current good manufacturing practices. Two sorting procedures are widely used, namely, fluorescence-activated cell sorting (FACS) and magnetic activated cel...
Both MD Anderson Cancer Center and Dr. Cooper have a financial interest in ZIOPHARM Oncology, Inc., and Intrexon Corporation. On May 7, 2015, Dr. Cooper was appointed as the Chief Executive Officer at ZIOPHARM Oncology. Dr. Cooper is now a Visiting Scientist at MD Anderson. Dr. Cooper founded and owns InCellerate, Inc. He has patents with Sangamo BioSciences with artificial nucleases. He consults with Targazyme, Inc. (formerly American Stem cells, Inc.), GE Healthcare, Ferring Pharmaceuticals, Fate Therapeutics, Janssen Pharmaceuticals, and Bristol-Myers Squibb. He is on the Scientific Advisory Board of Cellectis. He receives honoraria from Miltenyi Biotec.
We thank Miltenyi Biotec, Germany for providing reagents and CliniMACS Prodigy equipment for evaluation studies. We thank George T. McNamara (Pediatric department, MD Anderson Cancer Center) for proof reading the manuscript. Grant support: Cancer Center Core Grant (CA16672); RO1 (CA124782, CA120956, CA141303; CA141303); R33 (CA116127); P01 (CA148600); Burroughs Wellcome Fund; Cancer Prevention and Research Institute of Texas; CLL Global Research Foundation; Estate of Noelan L. Bibler; Gillson Longenbaugh Foundation; Harry T. Mangurian, Jr., Fund for Leukemia Immunotherapy; Institute of Personalized Cancer Therapy; Leukemia and Lymphoma Society; Lymphoma Research Foundation; MDACC’s Sister Institution Network Fund; Miller Foundation; Mr. Herb Simons; Mr. and Mrs. Joe H. Scales; Mr. Thomas Scott; National Foundation for Cancer Research; Pediatric Cancer Research Foundation; William Lawrence and Blanche Hughes Children's Foundation.
Name | Company | Catalog Number | Comments |
CliniMACS PBS/EDTA Buffer 3 L bag | Miltenyi Biotec GmbH | 700-29 | |
CliniMACS Prodigy Tubing Set TS 500 | Miltenyi Biotec GmbH | 130-097-182 | |
5 L waste bag | Miltenyi Biotec GmbH | 110-004-067 | |
CliniMACS Cytokine Capture System (IFN-gamma) | Miltenyi Biotec GmbH | 279-01 | |
Albumin (Human) 25% | Grifols | 58516-5216-2 | |
Luer/Spike Interconnector | Miltenyi Biotec GmbH | 130-018-701 | |
0.9 % NaCl Solution (1 L) | Miltenyi Biotec GmbH | ||
MACS GMP PepTivator HCMV pp65 | Miltenyi Biotec GmbH | 170-076-109 | |
Water for injections | Hospira, inc, Lake Forest, IL | NDC-0409-4887-10 | |
MILLEX GV Filter Unit 0.22 μm | Millipore | SLGV033RB | |
TexMACS GMP Medium 2 L bag | Miltenyi Biotec GmbH | 170-076-306 | |
Transfer Bag, 150 ml (for cellular starting material) | Miltenyi Biotec GmbH | 130-018-301 | |
CryoMACS Freezing Bag 50 | Miltenyi Biotec GmbH | 200-074-400 | |
60 ml Syringes, sterile | BD, Laagstraat, Temse, Belgium | 309653 | |
CMV sero positive apheresis product | Key Biologics, LLC, Memphis | ||
Flow Cytometry Materials | Manufacturer | Catalog number | |
AB Serum, GemCell | Gemini Bio-Products, West Sacramento, USA | 100-512 | |
CD3-FITC | Miltenyi Biotec GmbH | 130-080-401 | |
CD4-APC | Miltenyi Biotec GmbH | 130-098-033 | |
CD8-APC-Vio770 | Miltenyi Biotec GmbH | 130-098-065 | |
CD14-PerCP | Miltenyi Biotec GmbH | 130-098-072 | |
CD20-PerCP | Miltenyi Biotec GmbH | 130-098-077 | |
CD45-VioBlue | Miltenyi Biotec GmbH | 130-098-136 | |
aIFN-γ-PE, human | Miltenyi Biotec GmbH | 130-097-940 | |
CD3-PE | Miltenyi Biotec GmbH | 130-091-374 | |
Propidium Iodide Solution (100 µg/ml) | Miltenyi Biotec GmbH | 130-093-233 | |
Equipment | Manufacturer | Catalog Number | |
CliniMACS Prodigy Device | Miltenyi Biotec GmbH | 200-075-301 | |
Software V1.0.0.RC | |||
MACSQuant Analyzer 10 | Miltenyi Biotec GmbH | 130-096-343 | |
Software 2.4 | |||
Centrifuge 5415R | Eppendorf AG | 22331 | |
Cellometer K2 | Nexelom Bioscience, Lawrence, MA | LB-001-0016 | |
Sterile tubing welder SCDIIB | Terumo Medical Corp., Elkton, MA | 7811 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone