JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

This protocol describes the efficient induction of hemogenic endothelium and multipotential hematopoietic progenitors from human pluripotent stem cells via the forced expression of transcription factors.

Streszczenie

During development, hematopoietic cells arise from a specialized subset of endothelial cells, hemogenic endothelium (HE). Modeling HE development in vitro is essential for mechanistic studies of the endothelial-hematopoietic transition and hematopoietic specification. Here, we describe a method for the efficient induction of HE from human pluripotent stem cells (hPSCs) by way of overexpression of different sets of transcription factors. The combination of ETV2 and GATA1 or GATA2 TFs is used to induce HE with pan-myeloid potential, while a combination of GATA2 and TAL1 transcription factors allows for the production of HE with erythroid and megakaryocytic potential. The addition of LMO2 to GATA2 and TAL1 combination substantially accelerates differentiation and increases erythroid and megakaryocytic cells production. This method provides an efficient and rapid means of HE induction from hPSCs and allows for the observation of the endothelial-hematopoietic transition in a culture dish. The protocol includes hPSCs transduction procedures and post-transduction analysis of HE and blood progenitors.

Wprowadzenie

The unique ability of human pluripotent stem cells (hPSCs) to self-renew and to differentiate into cells of the three germ layers, including blood, make them a valuable tool for the mechanistic studies of hematopoietic development, modeling of blood diseases, drug screening, toxicity studies, and the development of cellular therapies. Because blood formation in the embryo proceeds from hemogenic endothelium (HE) through an endothelial hematopoietic transition1,2, the generation of HE in cultures would be essential to study the molecular mechanisms regulating the endothelial to hematopoietic transition and hematopoietic specification. Current methods for studies of HE are based on the induction of hematoendothelial differentiation in aggregates (EBs) with the addition of hematopoietic cytokines3-5, and coculture of hPSCs with hematopoiesis-supportive stromal cells6,7 or in two-dimensional cultures with extracellular matrices and cytokines8,9. These classical differentiation methods are based on the introduction of external signals acting at the cell surface and initiating cascades of molecular pathways that eventually lead to the activation of transcriptional program guiding hematoendothelial development. Thus, the efficiency of hPSCs differentiations in these systems relies on an effective induction of those signals, signal transduction to the nucleus, and the resulting activation of specific transcriptional regulators. In addition, the study of HE in conventional differentiation cultures requires the additional step of isolating HE cells using cell sorting. Here, we describe a simple protocol for the direct induction of HE and blood by overexpression of hematopoietic transcription factors. This method allows for the efficient induction of HE in a dish and direct observation of the endothelial to hematopoietic transition without the need for isolation of HE using a cumbersome cell sorting procedure.

Formation of HE and blood from human pluripotent stem cells can be efficiently induced by overexpressing just a few transcription factors (TFs). The optimal combination of TFs capable of inducing robust pan-myeloid hematopoiesis from hPSCs includes ETV2 and GATA1 or GATA2. In contrast, combination of GATA2 and TAL1 induces erythromegakaryocytopoiesis10. Programming hPSCs through overexpression of these factors differentiates hPSCs directly to the VE-cad+CD43-CD73- HE cells that gradually acquire the hematopoietic phenotype defined by the expression of the early hematopoietic marker CD437. This lentiviral-based method for the direct programming of human pluripotent stem cells method is applicable for the generation of HE and blood cells for mechanistic studies, studies of endothelial to hematopoietic transition, and transcriptional regulation of hematopoietic development and specification. Although the current protocol describes blood production using constitutive expression of the transgenes, similar results could be obtained using modified mRNA10.

Protokół

1. Virus Preparations and Transcription Factor Combinations

  1. Prepare solutions with pSIN-EF1α lentiviral expression plasmid containing protein-coding DNA for ETV2, GATA1, GATA2, TAL1 and LMO2 (Table 1).
  2. Measure the concentration and purity of plasmid preparations used for lentiviral production by recording UV absorption with a spectrophotometer at 230 nm, 260 nm, and 280 nm. Note: DNA preparations demonstrating A260/280 and A260/230 values greater than 1.8 are generally considered good quality. Lower A260/280 values may indicate protein contamination, while lower A260/230 values indicate impurities with salts or some solvent such as phenol. Recommended plasmid concentration is 1-3 µg/µl.
  3. Produce lentiviruses for transductions as described in previously published protocols11. Induction of HE with pan-myeloid potential requires co-expression of ETV2 and GATA1, or ETV2 and GATA2. Induction of HE with erythro- and megakaryocytic potential requires GATA2 and TAL1. The addition of LMO2 significantly improves the yield of erythro-megakaryocytic cells from hPSCs in the presence of GATA2 and TAL110.

2. hPSCs Culture Protocol

  1. Grow pluripotent stem cells in tight colonies with sharp edges to 70-80% confluency before subculturing. Mark and remove spontaneously differentiated colonies before passaging cells.
  2. Dilute commercial extracellular matrix gel (see Table 2) according to the manufacturer’s instructions and coat 6-well plates overnight at 4 °C, or for at least one hour at 37 °C prior to use. Before passaging cells, aspirate the matrix, add 2 ml of fresh commercial complete culturemedium (see Table 2) and keep plates at 37 °C, 5% CO2 until the cells are ready for seeding.
  3. Passage hPSCs
    1. Aspirate medium from one confluent well of a 6-well plate with hPSCs and add 1.5 ml of pre-warmed Dispase II solution (2 mg/ml in DMEM/F12, sterilized by filtration through 0.22 µm filters). Incubate for 5-7 min at 37 °C, 5% CO2 until the edges of colonies begin to lift from the surface.
    2. Aspirate Dispase II solution and carefully wash the colonies twice by adding and then aspirating 2 ml of fresh DMEM/F12 medium. Then, using a 5 ml serological glass pipette, dissociate hPSCs with 3 ml of fresh commercial complete culture medium (see Table 2) by pipetting cell suspension up and down several times.
    3. Add 0.5 ml of cell suspension to each well of a 6-well plate containing 1.5 ml of commercial complete culture medium (see Table 2). Agitate plate back and forth and right to left several times to ensure a uniform cell distribution when situating the plate into the incubator. Keep cells at 37 °C, 5% CO2 for 18-24 hr.
    4. The next day change medium to fresh commercial complete culture medium (see Table 2) and examine hPSCs morphology. Successful passaging results in small, well-attached colonies retaining hPSC morphology. hPSCs must be fed with 2.5-3 ml freshmedium per well on a daily basis and passaged every 4-5 days at no more than 70-80% confluence.
      NOTE: If hiPSCs were maintained on mouse embryonic fibroblasts (MEFs), they need to be transferred to feeder-free conditions and passaged 2-3 times before transduction to ensure efficient differentiation.

3. Induction of Hematoendothelial Pprecursors from hPSCs (day 0, Transduction of hPSCs)

  1. To prepare reaction medium combine 1.3 ml of commercial complete serum-free medium (see Table 2), virus, polybrene, and Y27632 ROCK inhibitor (Table 1): add 1.3 µl of 10 mM ROCK inhibitor to 1.3 ml medium to a final concentration of 10 μM, and polybrene to a final concentration 6 µg/ml.
    1. Add an appropriate amount of viral concentrate(s) at a final concentration of 0.5-1.0 MOI (multiplicity of infection) of each virus per cell. Keep reaction medium on ice or at 4 °C until the single cell suspension is ready.
      NOTE: The same amount of MOI for each virus in the GATA1/ETV2, GATA2/TAL1, and GATA2/TAL1/LMO2 reaction mixtures is optimal for induction of differentiation. However, in ETV2/GATA2 transduced cultures doubling MOI for GATA2, relative to ETV2, enhances differentiation. Therefore, for these cultures, ratio 1:2 for MOI of ETV2 and 1 MOI of GATA2 is recommended (e.g. if viral concentrate is estimated approximately 6.8 x 107 particles/ml, add 10 µl of ETV2 and 20 µl of GATA2 viral concentrates to 0.68 x 106 cells per one ETV2/GATA2 reaction in a 35 mm well of a 6-well plate).
  2. Prepare hPSCs in a single cell suspension.
    1. Grow hPSCs in feeder-free conditions as described in section 2. On day 4 following the last passage, observe cell density and morphology under an inverted microscope. hPSCs should grow in tight colonies with sharp edges with no spontaneous differentiation and reach ~60-70% confluency on the day of transduction.
    2. Aspirate medium, add 1.5-2 ml of commercial cell dissociation reagent (Table 1) per well and incubate at 37 °C with 5% CO2 for 5-7 min.
    3. Collect cells into equal volumes of commercial complete medium (see Table 2) with 10 µM of ROCK inhibitor, count the cells and determine viability. Pellet cells by centrifugation at 200 x g for 5 min and then resuspend cells in commercial complete medium with 10 µM of ROCK inhibitor to a concentration of 3.4-5 x 106 cells per ml.
      NOTE: Cell viability is critical for successful viral transduction and subsequent differentiation. Typically, cell viability before transduction should exceed 90%.
  3. Add 200 µl of the cell suspension, containing 0.68-1 x106 cells, into 1.3 ml of the reaction medium prepared in 3.1.
  4. Aspirate the matrix solution from the overnight coated 6-well plate prepared in 2.2., transfer the reaction mixture to one well of a 6-well plate and distribute cells evenly. Incubate at 37 °C with 5% CO2 for 24 hr. After 24 hr at least 80% of the cells should be attached to the matrix.

4. Induction of Hematoendothelial Precursors from hPSCs (Day 1-7)

  1. 24 hr post-transduction, remove virus-containing medium and wash attached cells with commercial incomplete cell culture medium (see Table 1) and then add 3 ml per well of commercial incomplete cell culture medium containing hematopoietic cytokines: SCF 100 ng/ml, TPO 50 ng/ml, bFGF 20 ng/ml (hereafter referred to as 3F-medium).
  2. Replace total medium with fresh 3F-medium on days 2, 3 and day 4 to remove dead cells and debris. After day 4, when floating hematopoietic cells are emerging, replace half of the 3F-medium every other day while maintaining the total volume at 4 ml.
    NOTE: pSIN-EF1α lentiviral expression plasmids incorporate puromycin resistance gene thereby allowing for positive selection of transduced cells. The 1 μg/ml of puromycin can be added to medium during the first 1-2 days of differentiation to eliminate the any residual undifferentiated hPSCs.
  3. Observe cell morphology on day 4 under an inverted microscope: tight clusters of cells with typical endothelial morphology begin to appear (Figures 2A, 3A). Round blood cells appears from day 5 to day 7 of differentiation, while some areas may retain hPSCs morphology. Analyze HE and hematopoietic differentiation as described below.
    NOTE: Successful hematoendothelial differentiation results in the production of blood cells that appear as refractile round cells loosely attached to underlying flat endothelial cells. These cells actively proliferate forming small aggregates, and eventually detach and float (Figures 2A and 3A). Live blood cells can be visually distinguished from the dead and dying cells based on their ability to reflect the light and expand in culture conditions.

5. Analysis of Hemogenic Endothelium (HE) Stage of Differentiation.

  1. Detect the formation of HE between days 3 and 4 of differentiation by microscopic observation of cells with endothelial morphology. There are no floating blood cells in the culture at this stage of differentiation. The presence of HE can be confirmed by immunofluorescent staining and flow cytometric analysis using VE-cadherin, CD73, CD226 and CD43 antibodies.
    1. To assess HE formation by flow cytometric analysis use cells on day 3 and day 4 from one experiment. Collect cells by incubating of cultures with commercial cell dissociation reagent (see Table 1) for 5-10 min at 37 °C, 5% CO2 and then use up to 1 x 105 cells per staining reaction (flow cytometry staining procedure described in 12).
      NOTE: VE-cadherin+ HE cells acquire expression of early hematopoietic marker CD226, but lack the expression of CD73 and CD436. In contrast, non-HE cells express CD73 (Figures 2B, 3B).
  2. Immunofluorescence staining for hPSC-derived HE.
    1. Wash the attached monolayer of cells with phosphate buffered saline (PBS) and then fix cells in 4% paraformaldehyde from 30 to 60 min at room temperature.
    2. Wash cells again with PBS and then permeabilize using 0.1% Triton X-100 in PBS for 20 min at room temperature.
    3. Wash cells in PBS two to three times and then incubate in blocking buffer consisting of PBS with 10% fetal bovine serum (FBS), for 30 to 120 min.
    4. Prepare staining solution, containing both primary antibodies (1:1,000 dilution) mouse anti-human CD43 and rabbit anti-human VE-cadherin in PBS with 5% FBS, (Table 1).
    5. Aspirate the blocking buffer from the cells and add 1 ml per well of staining buffer with the added primary antibodies; incubate 3 hr at room temperature, or overnight at 4 °C.
    6. Wash the cells three times by adding 2 ml of PBS with 5% FBS.
    7. Prepare a second staining buffer, containing secondary antibodies at 1:500 dilution in PBS with 5% FBS: donkey anti-rabbit conjugated with green fluorescent dye, and anti-mouse conjugated with red fluorescent dye (Table 1). Add 1 ml per well of secondary staining buffer and incubate at room temperature for 1 hr.
    8. Wash three times with PBS without serum. Stain cells with 300 nM DAPI working solution in dH2O for 10-15 min.
    9. Wash cells with PBS twice and add 2-3 ml of PBS into well with stained cells. Observe fluorescence with green, red and blue microscope filters.

6. Analysis of Induced Hematopoietic Precursors

  1. Maintain differentiation cultures until floating cells expand significantly, up to 10-14 days, changing half of the 3F-medium, as described in 3.1, every two days.
  2. Dissociate and collect differentiating monolayers of cells by treating cells with a commercial cell dissociation reagent (see Table 1) for 5-10 min at 37 °C, 5% CO2.
  3. Perform flow cytometry using anti-VE-cadherin, CD43 and CD45 antibodies to evaluate hematopoiesis in cultures12. Note that a large fraction of cells, up to 40% of ETV2 and GATA2 transduced cells, co-expresses VE-cad and CD43. The following antibodies can be used to detect specific cell lineages following expansion or differentiation of induced blood progenitors: CD235a (erythroid cells), CD41a (megakaryocytic), CD32 (all types of myeloid cells), CD66b (neutrophils) and CD163 (macrophages).
  4. Perform CFC-assay using a commercial clonogenic medium (Table 1) according to the manufacturer’s instructions.
    1. Transfer 1-2 x 104 cells into 3 ml of commercial clonogenic medium (see Table 3) to assess the number of colony-forming cells and types of hematopoietic colonies. Optimal seeding density allows for the identification and isolation of single colonies that grow separately from each other and do not overlap. Seeding density may vary between experiments depending on differentiation efficiency, but should not exceed 1 x 104 cells per 1 ml of commercial clonogenic medium.
    2. Mix cells in commercial clonogenic medium by gentle vortexing, and transfer 3 ml of suspension to two 35 mm ultra-low attachment dishes for CFC assay, 1.5 ml of suspension to each dish. Distribute medium evenly and incubate at 37 °C, 5% CO2 for 14 days. Avoid disturbing the dishes; observe colony formation on day 7 and day 10 of assay.
    3. Identify and count hematopoietic colonies according to their morphologies on day 14.

Wyniki

The schematic diagram of HE and blood induction from hPSCs by overexpression of transcription factors is shown in Figure 1. ETV2 with GATA1 or GATA2 combination induces pan-myeloid hematopoiesis, while a GATA2, TAL1 +/- LMO2 combination induces predominantly erythro-megakaryocytic hematopoiesis. Both TF combinations directly induced HE cells that subsequently transformed into blood progenitors with a distinct spectrum of hematopoietic differentiation. Differentiation of hPSCs from the pluripotent state t...

Dyskusje

The above-described method for hematopoietic differentiation of hPSCs by overexpression of TFs, represents a rapid and efficient approach for the generation of HE and myeloid and erytho-magakaryocytic progenitors from hESCs and iPSCs, thereby allowing the production of up to 30 millions blood cells from one million pluripotent stem cells10. This method exhibited consistent differentiation in multiple hESC and iPSCs lines10. During differentiation by ETV2 and GATA2, GATA1 factors as well as GATA2 and...

Ujawnienia

I.S. is a founding shareholder and consultant for Cynata.

Podziękowania

We thank Matt Raymond for editorial assistance. This work was supported by funds from the National Institute of Health (U01HL099773, R01HL116221, and P51 RR000167) and The Charlotte Geyer Foundation.

Materiały

NameCompanyCatalog NumberComments

Table 1. Induction of hPSCs differentiation with trancription factors and analysis of hemogenic endothelium and blood cells.

pSIN4-EF1a-ETV2-IRES-Puro AddgenePlasmid #61061Lentiviral Vector
pSIN4-EF1a-GATA2-IRES-Puro AddgenePlasmid #61063Lentiviral Vector
pSIN4-EF1a-GATA1-IRES-Puro AddgenePlasmid #61062Lentiviral Vector
pSIN4-EF1a-TAL1-IRES-Puro AddgenePlasmid #61062Lentiviral Vector
pSIN4-EF1a-LMO2-IRES-Puro AddgenePlasmid #61064Lentiviral Vector
Hexadimethrine bromide (Polybrene) Sigma-Aldrich107689-10GCationic polymer used to increase the efficiency of infection
Y-27632 (Dihydrochloride) ROCK inhibitorSTEMCELL Technologies72302RHO/ROCK pathway inhibitor Inhibits ROCK
StemPro Accutase Cell Dissociation ReagentLife TechnologiesA11105-01Cell Dissociation Reagent
Incomplete (growth factor- free) culture medium                                              mTeSR1 Custom formulation WiCell Research Institute (Madison, WI)MCFSerum-free mTeSR1 medium without bFGF and TGFb 
human SCFPeprotech300-07Premium grade
human TPOPeprotech300-18Research grade
human FGF-basicPeprotech100-18BPremium grade
CD144 (VE-cad) FITCBD Biosciences560411Endothelial marker (FACS)
CD226 PEBD Biosciences338305Hematopoietic (FACS)
CD43 PEBD Biosciences560199Hematopoietic (FACS)
CD73 APCR&D SystemsFAB5795AEndothelial marker (FACS)
CD45 APCBD Biosciences555485Hematopoietic (FACS)
7AADLife TechnologiesA1310Live/Dead assay (FACS)
Paraformaldehyde Sigma-AldrichP6148-500GCell fixation 
Triton X-100 Sigma-AldrichT9284-500ML Permeabilization 
FBSFisher ScientificSH3007003Fetal bovine serum
Mouse anti-human CD43BD Biosciences551457Pure, primary antibody for Immunofluorescence (IF) staining
Rabbit anti-human VE-cadherinBenderMedSystemBMS158Primary (IF)
Anti-rabbit Alexa Fluor 488-conjugatedJacksonResearch715-486-152Secondary (IF)
Anti-mouse Alexa Fluor 594-conjugatedJacksonResearch715-516-150 Secondary (IF)
DAPI nucleic acid stainLife TechnologiesD1306 Live/Dead assay (IF)
Clonogenic medium MethoCult H4435 EnrichedSTEMCELL Technologies4435CFC-assay
Wright Stain solutionSigma -Aldrich32857Staining cytospins

Table 2. hPSCs culture.

Human Pluripotent Stem Cells (hPSCs) WiCell Research Institute (Madison, WI)hESCs (WA01, WA09) human Embryonic Stem cells; iPSCs (DF-19-9-7T, DF-4-3-7T) transgene-free induced Pluripotent Stem CellshPSCs are able to self-renew and to differentiate into cells of three germ layers
Complete serum-free medium for culture of hPSCs                                                    mTeSR1 media  WiCell Research Institute (Madison, WI)M500 Serum-free  medium with growth factors for feeder free culture of ESC/iPSCs
MatrigelBD Biosciences/ Corning 356234Matrix for maintenance of human ESC/iPSCs
DMEM/F-12, powder Life Technologies12500-062Basal Medium 
HyClone Dulbecco's PBS powderFisher ScientificdSH30013.04PBS
Dispase II, powderLife Technologies17105-041Neutral protease, Cell dissociation

Table 3. Primers for detection of virus genomic integration.

Primer's NameForward (Fwd)  5’ -->3’Reverse (Rev) 5’-->3’Discription 
pSIN EF1a FwdTTC CAT TTC AGG TGT CGT GA--EF1a promoter sequence
GATA1 Rev--TCC CTG TAG TAG GCC AGT GC Coding Region 
GATA2 Rev--GGT TGG CAT AGT AGG GGT TG Coding Region 
TAL1 Rev--AGG CGG AGG ATC TCA TTC TT Coding Region 
LMO2 Rev--GGC CCA GTT TGT AGT AGA GGC Coding Region 
ETV2 Rev--GAA CTT CTG GGT GCA GTA AC  Coding Region 

Odniesienia

  1. Zape, J. P., Zovein, A. C. Hemogenic endothelium: origins, regulation, and implications for vascular biology. Semin Cell Dev Biol. 22, 1036-1047 (2011).
  2. Swiers, G., Rode, C., Azzoni, E., de Bruijn, M. F. A short history of hemogenic endothelium. Blood Cells, Mol & Dis. 51, 206-212 (2013).
  3. Kennedy, M., et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep. 2, 1722-1735 (2012).
  4. Wang, L., et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity. 21, 31-41 (2004).
  5. Rafii, S., et al. Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood. 121 (5), 770-780 (2012).
  6. Choi, K. D., et al. Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep. 2, 553-567 (2012).
  7. Vodyanik, M. A., Thomson, J. A., Slukvin, I. I. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood. 108, 2095-2105 (2006).
  8. Wang, C., et al. TGFbeta inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy. Cell Res. 22, 194-207 (2012).
  9. Uenishi, G., et al. Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Rep. 3, 1073-1084 (2014).
  10. Elcheva, I., et al. Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. Nat Commun. 5, 4372 (2014).
  11. Tiscornia, G., Singer, O., Verma, I. M. Production and purification of lentiviral vectors. Nat Protoc. 1, 241-245 (2006).
  12. Vodyanik, M. A., Slukvin, I. I. Hematoendothelial differentiation of human embryonic stem cells. Curr Protoc Cell Biol. Chapter 23, Unit 23.6 (2007).
  13. Cao, F., et al. Comparison of gene-transfer efficiency in human embryonic stem cells. Mol Imgn and Biol. 12, 15-24 (2010).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Hemogenic EndotheliumHematopoietic CellsPluripotent Stem CellsTranscription FactorsETV2GATA1GATA2TAL1LMO2Endothelial hematopoietic TransitionErythroidMegakaryocyticIn Vitro Modeling

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone