Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
A procedure for the preparation of porous hybrid separation media composed of a macroporous polymer monolith internally coated by a high surface area microporous coordination polymer is presented.
We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process.
The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications.
Porous coordination polymers (PCPs) are coordination compounds based on metal centers linked by organic ligands with repeating coordination entities extending in 1, 2 or 3 dimensions that can be amorphous or crystalline1-3. In recent years, this class of porous materials has attracted widespread attention due to their high porosity, wide chemical tunability, and their stability. PCPs have been explored for a range of applications including gas storage, gas separation, and catalysis3-6, and very recently, the first analytical applications of PCPs have been described7.
Because of their enhanced chemical functionality and high porosity PCPs have been targeted for their huge potential for the improvement of purification processes and chromatographic separations, and a number of reports concerning this topic have been published7-13. However, the performance of PCPs is not currently at an equivalent level with existing chromatographic materials likely due to fast diffusion through large interparticle voids in packed beds of these solids due to their typically irregularly shaped morphologies of their particles or crystals. This irregularly distributed packing leads to a lower than expected performance, as well as high column backpressures and undesirable peak shape morphologies14,15.
In order to solve the problem of fast diffusion through the inter-particle voids and concomitantly enhance the performance of PCPs for analytical applications, the development of a hybrid material based on a macroporous polymer monolith16 that contains the PCP on the surface of the macropores would be desirable. Polymer monoliths are self-contained, single-piece materials that can sustain convective flow through their pores, which makes them one of the most efficient alternatives to bead packings and have been successfully commercialized by several companies17,18. Porous polymer monoliths are usually based on the polymerization of a monomer and a crosslinker in the presence of porogens, which are typically binary mixtures of organic solvents. The obtained monolithic materials have a microglobular structure and a high porosity and flow permeability.
A simple approach to unify these materials to prepare a polymer monolith containing a PCP is based on the direct addition of as-synthesized PCPs in the polymerization mixture of the monolith. This approach resulted in PCPs mostly buried within a polymer scaffold, and not being active for the further application of the final material14,15. A different synthetic approach is clearly needed in order to, for example, develop uniform films of PCPs, or crystalline metal-organic frameworks (MOFs) where the majority of the pores contained within the crystal are accessible from the macropores of the polymer monolith.
Herein we report a simple protocol for the preparation of a metal-organic polymer hybrid material (MOPH) based on a macroporous polymer support with suitable functional groups for the attachment of PCPs, which can be easily implemented as a self-contained single-piece polymer monolith in a column format with optimum properties for flow-through applications. The polymer synthesis procedure is followed by a simple room temperature solution-based method to grow a PCP coating on the internal surface of the pores of the monolith19-20. As the first example, we describe the preparation of an iron(III) benzenetricarboxylate (FeBTC) coordination polymer film within a macroporous poly(styrene-divinylbenzene-methacrylic acid) monolith. This method is effective for the preparation of bulk powders as well as capillary columns and the described protocol is readily implementable to other PCPs. As an example of the potential of MOPHs as functional materials for flow-through applications, we applied the developed FeBTC MOPH which contains a dense coating of Fe(III) centers to enrich phosphopeptides from digested protein mixtures exploiting the binding affinity of phosphopeptides to Fe(III). The developed protocol21 comprises three main parts: Preparation of the macroporous organic polymer monolith support; growth of the PCP coating on the surface of the pores of the monolith; application for the enrichment of phosphopeptides.
NOTE: Before beginning, check all relevant material data sheets (MSDSs). Several of the chemicals used in the synthetic and application procedures are toxic. Please follow all appropriate safety practices and use adequate protective equipment (lab coat, full-length pants, closed-toe shoes, safety glasses, gloves). Please use all cryogenic personal protective equipment when handling liquid nitrogen for the nitrogen adsorption measurements (insulated gloves, face shield).
1. Porous Polymer Monolith Preparation in Bulk and Capillary Column Format
2. Growth of the Iron-benzenetrycarboxylate (FeBTC) PCP
3. Protein Digestion and Enrichment of Phosphopeptides
A schematic illustration of the PCP growth on the pore surface of the organic polymer monolith is shown in Figure 1. In this figure, we illustrate the initial Fe(III) atoms retained on the pore surface of the original polymer monolith coordinated to carboxylic functional groups. Using the protocol described herein additional organic ligand and Fe(III) ions are added to the surface, shaping a porous coordination network within the polymer monolith. Figure 1 also shows schematically the us...
The original polymer monolith contains carboxylic functional groups able to bind to metals. Coordinating the initial metal sites on the original material, we are able to grow a PCP coating (Figure 1A), incorporating a number of additional metal sites shaping a microporous network. This makes the presented MOPH materials attractive for extraction or purification procedures where metallic species are involved, such as the immobilized metal-ion affinity chromatography (IMAC) technique. The general procedure...
The authors have nothing to disclose.
This work has been performed at the Molecular Foundry, Lawrence Berkeley National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy, under Contract No. DE-AC02–05CH11231. The financial support of F.M. by a ME-Fulbright fellowship and A.S. by Higher Education Commission of Pakistan are gratefully acknowledged.
Name | Company | Catalog Number | Comments |
Polyimide-coated capillaries | Polymicro Technologies | TSP100375 | 100 μm i.d. |
3-(trimethoxysilyl)propyl methacrylate, 98% | Sigma-Aldrich | 440159 | |
Styrene, 99% | Sigma-Aldrich | W323306 | Technical grade |
Divinylbenzene, 80% | Sigma-Aldrich | 414565 | |
Methacrylic acid, 98% | Mallinckrodt | MK150659 | |
Toluene, ≥99.5% | EMD chemicals | MTX0735-6 | |
Isooctane, ≥99.5% | Sigma-Aldrich | 650439 | |
2,2'-azobisisobutyronitrile, 98% | Sigma-Aldrich | 441090 | |
Aluminium oxide (basic alumina) | Sigma-Aldrich | 199443 | |
Iron (III) chloride hexahydrate, 97% | Sigma-Aldrich | 236489 | |
1,3,5-benzenetrycarboxylic acid, 95% | Sigma-Aldrich | 482749 | |
Acetonitrile, ≥99.5% | Sigma-Aldrich | 360457 | |
Ammonium bicarbonate, ≥99.5% | Sigma-Aldrich | 9830 | |
Trifluoroacetic acid, ≥99% | Sigma-Aldrich | 302031 | |
Ethanol, ≥99.8% | Sigma-Aldrich | 2854 | |
Iodoacetamide, ≥99% | Sigma-Aldrich | I1149 | |
Dithiothreitol, ≥99% | Sigma-Aldrich | 43819 | |
Monobasic sodium phosphate dihydrate, ≥99% | Sigma-Aldrich | 71505 | |
Dibasic sodium phosphate dihydrate, ≥99% | Sigma-Aldrich | 71643 | |
Phosphoric acid, ≥85% | Sigma-Aldrich | 438081 | |
2,5-dihydroxybenzoic acid, ≥99% | Sigma-Aldrich | 85707 | |
Trypsin | Sigma-Aldrich | T8003 | Bovine pancreas |
β-casein | Sigma-Aldrich | C6905 | Bovine milk |
ZipTip pipette tips | Merck Millipore | ZTC18S096 | C18 resin |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone