Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
A protocol for bioinspired design is described for a sampling device based on the jaws of a sea urchin. The bioinspiration process includes observing the sea urchins, characterizing the mouthpiece, 3D printing of the teeth and their assembly, and bioexploring the tooth structure.
Bioinspired design is an emerging field that takes inspiration from nature to develop high-performance materials and devices. The sea urchin mouthpiece, known as the Aristotle's lantern, is a compelling source of bioinspiration with an intricate network of musculature and calcareous teeth that can scrape, cut, chew food and bore holes into rocky substrates. We describe the bioinspiration process as including animal observation, specimen characterization, device fabrication and mechanism bioexploration. The last step of bioexploration allows for a deeper understanding of the initial biology. The design architecture of the Aristotle's lantern is analyzed with micro-computed tomography and individual teeth are examined with scanning electron microscopy to identify the microstructure. Bioinspired designs are fabricated with a 3D printer, assembled and tested to determine the most efficient lantern opening and closing mechanism. Teeth from the bioinspired lantern design are bioexplored via finite element analysis to explain from a mechanical perspective why keeled tooth structures evolved in the modern sea urchins we observed. This circular approach allows for new conclusions to be drawn from biology and nature.
The fields of biology, biological materials science, biomaterials, bioengineering and biochemistry employ the premiere scientific techniques and minds in an attempt to provide a deeper understanding of the incredible natural world. This research has explained many of the most amazing biological structures and organisms; from the intrinsic toughness of human bone1,2 to the large beak of the toucan3. However, much of this knowledge is difficult to employ in a manner that can provide a benefit to society. As a result, the tangential field of bioinspiration employs the lessons learned from nature to modern materials in order to solve common problems. Examples include superhydrophobic surfaces inspired by lotus leaves4-6, adhesive surfaces inspired by the feet of geckos and insects7,8, tough ceramics inspired by the nacre of abalone9-11 and biopsy harvesters inspired by the mouthpiece of the sea urchin, also known as the Aristotle's lantern12,13.
Sea urchins are invertebrate animals covered with spines whose habitat most commonly consists of the rocky beds on the ocean floor. The body (called a test) in the largest urchin species can be more than 18 cm in diameter; test size in pink sea urchins (Strongylocentrotus fragilis) examined in this study can grow to 10 cm diameter. The Aristotle's lantern is composed of five predominately calcium carbonate teeth supported by pyramid structures composed of mineralized tissue and arranged into a dome-like formation that enclose all but the distal grinding tips of the teeth (Figure 1A).
The muscle structure of the jaws is capable of efficient chewing and scraping even against hard ocean rocks and corals. When the jaws open, the teeth protrude outwards and when the jaws close, the teeth retract inwards in a single smooth motion. Comparison between primitive (above) and modern (below) sea urchin tooth cross-sections (Figure 1B) indicates that a keeled tooth evolved to strengthen the tooth when grinding against hard substrates. Each individual tooth has a slightly convex curvature and a T-shaped morphology in the transverse plane (normal to the growth direction) due to the longitudinally attached keel (Figure 1C, D).
Bioinspiration begins with observation of interesting natural phenomena, such as the efficient chewing motion of the Aristotle's lantern in sea urchins. This natural structure initially captivated Aristotle because it reminded him of a horn lantern with the panes of horn left out. More than two millennia later, Scarpa was fascinated by the complexity of the Aristotle's lantern that he and later Trogu mimicked the natural chewing motion using only paper and rubber bands (Figure 2A)15,16. Similarly, Jelinek was bioinspired by the chewing motion of the Aristotle's lantern and developed a better biopsy harvester that could safely isolate tumorous tissue without spreading cancerous cells (Figure 2B, C)12,13. In this case, bioinspired design was utilized to make a biomedical device that fit a specific need for a desired application.
The design protocol described here applies to a sediment sampler bioinspired by sea urchins. Through biological materials science, the natural structure of the Aristotle's lantern is characterized. Bioinspired design identifies potential applications where the natural mechanisms can be enhanced through the use of modern materials and fabrication techniques. The final design is re-examined through the prism of bioexploration to understand how the natural tooth structure evolved (Figure 3). The last bioexploration step, proposed by Porter17,18, uses engineering analysis methods to explore and explain biological phenomena. All the important steps of the bioinspiration process are presented as an example for harnessing technology, pre-approved by nature, which can be used for solving modern problems. Our protocol, motivated by previous bioinspiration procedures presented for specific applications by Arzt7, is targeted for biologists, engineers and anyone else who is inspired by nature.
1. Biological Materials Science
2. Bioinspired Design
3. Bioexploration
Bioinspired design of the Aristotle's lantern sampling device depends heavily upon the quality of the characterization methods used. Non-invasive techniques like µ-CT are helpful for analyzing the whole lantern and individual teeth to apply application specific enhancements for the bioinspired design (Figure 4). Meanwhile, the tooth microstructure can be explored via secondary electron and back-scattered electron micrographs of the polished cross-section of an in...
Sea urchins use the Aristotle's lantern (Figure 1A) for a variety of functions (feeding, boring, pivoting, etc.). The fossil record indicates that the lantern has evolved in shape and function from the most primitive cidaroid type to the camarodont type of modern sea urchins14. Cidaroid lanterns have longitudinally grooved teeth (Figure 1B, top) and non-separated muscle attachment to its pyramid structure. This limits their up and down movement and robs them of th...
We have nothing to disclose.
This work is supported by Multi-University Research Initiative through the Air Force Office of Scientific Research of the United States (AFOSR-FA9550-15-1-0009) (M. B. F., S. E. N., J.-Y. J., J. M). Collection of pink sea urchins was supported by the University of California Ship Funds and the US National Marine Fisheries Service (K.N.S., J.R.A.T). The authors acknowledge the following people: Prof. Jerry Tustaniwskyj for helpful suggestions during development of the bioinspired Aristotle's lantern sampler, Prof. Marc A. Meyers (UCSD, Dept. of Mechanical and Aerospace Engineering, Materials Science and Engineering Program), Prof. Robert L. Sah and Esther Cory (UCSD, Dept. of Bioengineering), and Dr. Maya deVries (Marine Biology Research Division, Scripps Institution of Oceanography). We also thank undergraduate students Sze Hei Siu, Jerry Ng and Ivan Torres for polishing urchin teeth cross-sections.
Name | Company | Catalog Number | Comments |
BUEHLERMET II 8 PLN 600/P1200 | Buehler | 305308600102 | Abrasive paper for polishing |
TRIDENT POLISH CLOTH 8" PSA | Buehler | 407518 | Polish cloth for 3 μm suspension |
METADI SUPREME POLY SUSP,3MIC | Buehler | 406631 | Polish suspension (3 μm) |
MICROCLOTH FOR 8 IN WHEEL PSA | Buehler | 407218 | Polish cloth for 50 nm suspension |
MASTERPREP SUSPENSION, 6 OZ | Buehler | 636377006 | Polish suspension (50 nm) |
Skyscan 1076 micro-CT Scanner | Bruker | Micro-CT scanner equipment | |
Amira software | FEI Visualization Sciences Group | Software for 3D manipulation of Micro-CT scans | |
FEI Philips XL30 | FEI Philips | ESEM equipment for characterization of polished tooth cross-sections | |
SolidWorks Design software | Dassault Systems | Design software for CAD drawing bioinspired device | |
SolidWorks Simulation software | Dassault Systems | Simulation software for stress test of CAD drawing bioinspired device | |
Dimension 1200es | Stratasys | 3D printer for fabrication of bioinspired device from CAD drawing | |
ABSplus | Stratasys | 3D printer plastic |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone