Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes the use of multiphoton microscopy to perform extended time-lapse imaging of multicellular interactions in real time, in vivo at single cell resolution.
In the tumor microenvironment, host stromal cells interact with tumor cells to promote tumor progression, angiogenesis, tumor cell dissemination and metastasis. Multicellular interactions in the tumor microenvironment can lead to transient events including directional tumor cell motility and vascular permeability. Quantification of tumor vascular permeability has frequently used end-point experiments to measure extravasation of vascular dyes. However, due to the transient nature of multicellular interactions and vascular permeability, the kinetics of these dynamic events cannot be discerned. By labeling cells and vasculature with injectable dyes or fluorescent proteins, high-resolution time-lapse intravital microscopy has allowed the direct, real-time visualization of transient events in the tumor microenvironment. Here we describe a method for using multiphoton microscopy to perform extended intravital imaging in live mice to directly visualize multicellular dynamics in the tumor microenvironment. This method details cellular labeling strategies, the surgical preparation of a mammary skin flap, the administration of injectable dyes or proteins by tail vein catheter and the acquisition of time-lapse images. The time-lapse sequences obtained from this method facilitate the visualization and quantitation of the kinetics of cellular events of motility and vascular permeability in the tumor microenvironment.
Dissemination of tumor cells from the primary mammary tumor has been shown to involve not only tumor cells, but host stromal cells including macrophages and endothelial cells. Furthermore, tumor vasculature is abnormal with increased permeability1. Thus, determining how tumor cells, macrophages and endothelial cells interact to mediate vascular permeability and tumor cell intravasation in the primary tumor microenvironment is important for understanding metastasis. Understanding the kinetics of vascular permeability, tumor cell intravasation and the underlying signaling mechanism of multicellular interactions in the tumor microenvironment can provide crucial information in the development and administration of anti-cancer therapies.
The primary means of studying tumor vascular permeability in vivo has been the measurement of extravascular dyes such as Evans blue2, high molecular weight dextrans (155 kDa)3 and fluorophore or radiotracer-conjugated proteins (including albumin)4 at fixed time points after injection of the dye. Advancements in microscopy, animal models and fluorescent dyes have enabled the visualization of cellular processes and vascular permeability in live animals through intravital microscopy5.
Live animal imaging with the acquisition of static images, or short time-lapse sequences over several time points does not allow for the complete understanding of dynamic events in the tumor microenvironment6,7. Indeed, static image acquisition over the course of 24 hr demonstrated that tumor vasculature is leaky, however the dynamics of vascular permeability was not observed6. Thus, extended continuous time-lapse imaging up to 12 hours captures the kinetics of dynamic events in the tumor microenvironment.
This protocol describes the use of extended time-lapse multiphoton intravital microscopy to study dynamic multicellular events in the tumor microenvironment. Multiple cell types in the tumor microenvironment are labeled with injectable dyes or by using transgenic animals expressing fluorescent proteins. Using a tail vein catheter vascular dyes or proteins can be injected after the start of imaging to acquire kinetic data of multicellular events in the tumor microenvironment. For live cell imaging the mammary tumor is exposed through the surgical preparation of a skin flap. Images are acquired for up to 12 hours using a multiphoton microscope equipped with multiple photomultiplier tubes (PMT) detectors8. By using appropriate filters, a subtraction algorithm enables 4 PMT detectors to acquire 5 fluorescent signals in the tumor microenvironment simultaneously9. High-resolution multiphoton intravital microscopy captures single cell resolution imaging of tumor-stroma interactions in the tumor microenvironment, leading to a better understanding of vascular permeability and tumor cell intravasation10-13. Specifically, extended intravital imaging revealed highly localized, transient vascular permeability events that occur selectively at sites of interaction between a tumor cell, a macrophage and an endothelial cell (defined as the Tumor MicroEnvironment of Metastasis, TMEM14)13. Furthermore, tumor cell intravasation occurs only at TMEM and is spatially and temporally correlated with vascular permeability13. Single cell resolution of the dynamics of these events was made possible through the use of extended time-lapse multiphoton microscopy of fluorescently labeled cells in the tumor microenvironment.
All procedures described must be performed in accordance with guidelines and regulations for the use of vertebrate animals, including prior approval by the Albert Einstein College of Medicine Institutional Animal Care and Use Committee.
1. Generating Fluorescently Labeled Tumors and Tumor-associated Macrophages
2. Microscope Setup and Imaging Preparation
Note: This procedure describes the set-up for intravital imaging on a multiphoton microscope8.
3. Preparation of Tail Vein Catheter and Reagents for Injection during Imaging
4. Insertion of the Indwelling Tail Vein Catheter
5. Skin Flap Surgical Procedure to Expose the Mammary Tumor
6. Animal Preparation for Microscopy
7. Image Acquisition and Injection of Fluorescent Dyes and Injectable Proteins
8. Euthanasia
9. Image Processing
Extended time-lapse intravital microscopy enables single cell resolution imaging of multicellular processes in the tumor microenvironment. By fluorescently labeling tumor cells, macrophages, the vascular space, and visualizing the collagen fiber network using the second harmonic generation signal, multiple compartments in the tumor microenvironment are simultaneously tracked during imaging. Tumor cells labeled with fluorescent proteins can be generated in transgenic mice as has been done ...
Cellular interactions that occur spontaneously in the tumor microenvironment can lead to changes in tumor cell motility and intravasation. High-resolution intravital imaging of live tumor tissue permits the visualization of multi-cellular dynamics that can be highly transient10,13,24. End-point in vivo assays or time-lapse images acquired with discrete time points can provide essential information on molecular mechanisms of processes in the tumor microenvironment. Intravital imaging studies have been ...
The authors have nothing to disclose.
This research was supported by the Department of Defense Breast Cancer Research Program under award number (A.S.H, W81XWH-13-1-0010), NIH CA100324, PPG CA100324, and the Integrated Imaging Program.
Name | Company | Catalog Number | Comments |
155 kDa dextran-tetramethylrhodamine isothiocyanate | Sigma Aldrich | T1287 | reconstitute at 20 mg/ml in 1x PBS |
70 kDa dextran-Texas Red | Life Technologies | D-1830 | reconstitute at 10 mg/ml in 1x PBS |
10 kDa dextran-fluorescein isothyocyanate | Sigma Aldrich | FD10S | reconstitute at 20 mg/ml in 1x PBS |
Qdot 705 ITK Amino (PEG) Quantum Dots | Life Technologies | Q21561MP | Dilute 25 μl in 175 μl of 1x PBS for injection |
MMTV-PyMT mice | Jackson Laboratory | 2374 | |
Csf1r-ECFP mice (Csf1r-Gal4/VP16,UAS-ECFP) | Jackson Laboratory | 26051 | |
Csf1r-EGFP mice | Jackson Laboratory | 18549 | |
1x PBS | Life Technologies | ||
Isoethesia (isoflurane) | Henry Schein Animal Health | 50033 | 250 ml |
Oxygen | AirTech | ||
1 ml syringe, tuberculin slip tip | BD | 309659 | |
30 G x 1 (0.3 mm x 25 mm) needle | BD | 305128 | |
Polyethylene micro medical tubing | Scientific Commodities Inc | BB31695-PE/1 | 0.28 mm I.D. x 0.64 mm O.D. |
Microscope coverglass | Corning | 2980-225 | thickness 1.5, 22 x 50 mm |
PhysioSuite MouseSTAT pulse oximeter, software and sensors | Kent Scientific | ||
Laboratory tape | Fisher Scientific | 159015R | |
soft rubber pad | McMaster-Carr | 8514K62 | Ultra-Soft Polyurethane Film, 3/16” Thick, 12" x 12", 40 Oo Durometer, Plain Back |
hard rubber pad | McMaster-Carr | 8568K615 | High-Strength Neoprene Rubber Sheet 1/4" Thick, 12" x 12", 50 A Durometer |
Microscope | Olympus | The microscope is a custom built two laser multiphoton microscope based on an Olympus IX-71 stand utilizing a 20X 1.05NA objective lens. | |
7-Punch set | McMaster-Carr | 3429A12 | 1/4" to 1" Hole Diameter, for Hammer-Driven Hole Punch |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone