JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Extended Time-lapse Intravital Imaging of Real-time Multicellular Dynamics in the Tumor Microenvironment

Published: June 12th, 2016



1Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, 2Department of Radiology, Albert Einstein College of Medicine, 3Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 4Integrated Imaging Program, Albert Einstein College of Medicine

This protocol describes the use of multiphoton microscopy to perform extended time-lapse imaging of multicellular interactions in real time, in vivo at single cell resolution.

In the tumor microenvironment, host stromal cells interact with tumor cells to promote tumor progression, angiogenesis, tumor cell dissemination and metastasis. Multicellular interactions in the tumor microenvironment can lead to transient events including directional tumor cell motility and vascular permeability. Quantification of tumor vascular permeability has frequently used end-point experiments to measure extravasation of vascular dyes. However, due to the transient nature of multicellular interactions and vascular permeability, the kinetics of these dynamic events cannot be discerned. By labeling cells and vasculature with injectable dyes or fluorescent proteins, high-resolution time-lapse intravital microscopy has allowed the direct, real-time visualization of transient events in the tumor microenvironment. Here we describe a method for using multiphoton microscopy to perform extended intravital imaging in live mice to directly visualize multicellular dynamics in the tumor microenvironment. This method details cellular labeling strategies, the surgical preparation of a mammary skin flap, the administration of injectable dyes or proteins by tail vein catheter and the acquisition of time-lapse images. The time-lapse sequences obtained from this method facilitate the visualization and quantitation of the kinetics of cellular events of motility and vascular permeability in the tumor microenvironment.

Dissemination of tumor cells from the primary mammary tumor has been shown to involve not only tumor cells, but host stromal cells including macrophages and endothelial cells. Furthermore, tumor vasculature is abnormal with increased permeability1. Thus, determining how tumor cells, macrophages and endothelial cells interact to mediate vascular permeability and tumor cell intravasation in the primary tumor microenvironment is important for understanding metastasis. Understanding the kinetics of vascular permeability, tumor cell intravasation and the underlying signaling mechanism of multicellular interactions in the tumor microenvironment can provide crucia....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All procedures described must be performed in accordance with guidelines and regulations for the use of vertebrate animals, including prior approval by the Albert Einstein College of Medicine Institutional Animal Care and Use Committee.

1. Generating Fluorescently Labeled Tumors and Tumor-associated Macrophages

  1. Generate fluorescently labeled tumor cells by crossing the spontaneous, autochthonous, genetically engineered mouse mammary cancer model where the mouse mammary tumor virus long terminal repeat .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Extended time-lapse intravital microscopy enables single cell resolution imaging of multicellular processes in the tumor microenvironment. By fluorescently labeling tumor cells, macrophages, the vascular space, and visualizing the collagen fiber network using the second harmonic generation signal, multiple compartments in the tumor microenvironment are simultaneously tracked during imaging. Tumor cells labeled with fluorescent proteins can be generated in transgenic mice as has been done .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Cellular interactions that occur spontaneously in the tumor microenvironment can lead to changes in tumor cell motility and intravasation. High-resolution intravital imaging of live tumor tissue permits the visualization of multi-cellular dynamics that can be highly transient10,13,24. End-point in vivo assays or time-lapse images acquired with discrete time points can provide essential information on molecular mechanisms of processes in the tumor microenvironment. Intravital imaging studies have been .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This research was supported by the Department of Defense Breast Cancer Research Program under award number (A.S.H, W81XWH-13-1-0010), NIH CA100324,  PPG CA100324, and the Integrated Imaging Program.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
155 kDa dextran-tetramethylrhodamine isothiocyanate Sigma Aldrich T1287 reconstitute at 20 mg/mL in 1 X PBS
70 kDa dextran-Texas Red Life Technologies D-1830 reconstitute at 10 mg/mL in 1 X PBS
10 kDa dextran-fluorescein isothyocyanate Sigma Aldrich FD10S reconstitute at 20 mg/mL in 1 X PBS
Qdot 705 ITK Amino (PEG) Quantum Dots Life Technologies Q21561MP Dilute 25 uL in 175 uL of 1 X PBS for injection
MMTV-PyMT mice Jackson Laboratory 2374
Csf1r-ECFP mice (Csf1r-Gal4/VP16,UAS-ECFP) Jackson Laboratory 26051
Csf1r-EGFP mice Jackson Laboratory 18549
1 x PBS Life Technologies
Isoethesia (isoflurane) Henry Schein Animal Health 50033 250 mL
Oxygen AirTech
1 mL syringe, tuberculin slip tip BD 309659
30G x 1 (0.3 mm X 25 mm) needle BD 305128
Polyethylene micro medical tubing  Scientific Commodities Inc BB31695-PE/1 0.28 mm I.D. X 0.64 mm O.D.
Microscope coverglass Corning 2980-225 thickness 1.5, 22 X 50 mm
MouseOx oximeter, software and sensors STARR Life Sciences
Laboratory tape Fisher Scientific 159015R
soft rubber pad McMaster-Carr 8514K62 Ultra-Soft Polyurethane Film, 3/16” Thick, 12" x 12", 40 Oo Durometer, Plain Back
hard rubber pad McMaster-Carr 8568K615 High-Strength Neoprene Rubber Sheet 1/4" Thick, 12" X 12", 50A Durometer,
Microscope Olympus The microscope is a custom built two laser multiphoton microscope based on an Olympus IX-71 stand utilizing a 20x 1.05NA objective lens. 
7-Punch set McMaster-Carr 3429A12 , 1/4" to 1" Hole Diameter, for Hammer-Driven Hole Punch, 

  1. Gerlowski, L. E., Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 31 (3), 288-305 (1986).
  2. Wang, H. -. L., Lai, T. W. Optimization of Evans blue quantitation in limited rat tissue samples. Sci Rep. 4, (2014).
  3. Dvorak, H. F. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol. 162 (6), 1747-1757 (2003).
  4. Nagy, J. A., et al. Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab Invest. 86 (8), 767-780 (2006).
  5. Egawa, G., et al. Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep. 3, (2013).
  6. Yuan, F., et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55 (17), 3752-3756 (1995).
  7. Dellian, M., Yuan, F., Trubetskoy, V. S., Torchilin, V. P., Jain, R. K. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br J Cancer. 82 (9), 1513-1518 (2000).
  8. Entenberg, D., et al. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nat Protocols. 6 (10), 1500-1520 (2011).
  9. Entenberg, D., et al. Imaging tumor cell movement in vivo. Curr Protoc Cell Biol. Chapter. 19, (2013).
  10. Patsialou, A., et al. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo. cell migration in human breast tumors. Intravital. 2 (2), e25294 (2013).
  11. Gligorijevic, B., Bergman, A., Condeelis, J. Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLoS Biol. 12 (11), e1001995 (2014).
  12. Roussos, E. T., et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci. 13, 2120-2131 (2011).
  13. Harney, A. S., et al. Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA). Cancer Discov. 5 (9), 932-943 (2015).
  14. Robinson, B. D., et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res. 15, 2433-2441 (2009).
  15. Sasmono, R. T., et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood. 101 (3), 1155-1163 (2003).
  16. Ovchinnikov, D. A., et al. Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice. J Leukcocyte Biol. 83 (2), 430-433 (2008).
  17. Liu, H., et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A. 107 (42), 18115-18120 (2010).
  18. Nakasone, E. S., Askautrud, H. A., Egeblad, M. Live imaging of drug responses in the tumor microenvironment in mouse models of breast cancer. J Vis Exp. (73), (2013).
  19. Weis, S., Cui, J., Barnes, L., Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol. 167 (2), 223-229 (2004).
  20. Wyckoff, J., Gligorijevic, B., Entenberg, D., Segall, J., Condeelis, J. High-Resolution Multiphoton Imaging of Tumors. In Vivo. Cold Spring Harb Protoc. (10), (2011).
  21. Lathia, J. D., et al. Direct in vivo. evidence for tumor propagation by glioblastoma cancer stem cells. PLoS One. 6 (9), e24807 (2011).
  22. Nakasone, E. S., et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 21 (4), 488-503 (2012).
  23. Dreher, M. R., et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst. 98 (5), 335-344 (2006).
  24. Wyckoff, J. B., et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67 (6), 2649-2656 (2007).
  25. Chittajallu, D. R., et al. In vivo. cell-cycle profiling in xenograft tumors by quantitative intravital microscopy. Nat Methods. 12 (6), 577-585 (2015).
  26. Kedrin, D., et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods. 5 (12), 1019-1021 (2008).
  27. Yano, S., et al. Spatial-temporal FUCCI imaging of each cell in a tumor demonstrates locational dependence of cell cycle dynamics and chemoresponsiveness. Cell Cycle. 13 (13), 2110-2119 (2014).
  28. Yang, M., Jiang, P., Hoffman, R. M. Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time. Cancer Res. 67 (11), 5195-5200 (2007).
  29. Manning, C. S., et al. Intravital imaging reveals conversion between distinct tumor vascular morphologies and localized vascular response to Sunitinib. Intravital. 2 (1), 24790 (2013).
  30. Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K., Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol. 130 (6), 1147-1154 (2008).
  31. Brown, E. B., et al. In vivo. measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med. 7 (7), 864-868 (2001).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved